10.1002/adsc.202000445
Advanced Synthesis & Catalysis
Gómez, F. Foubelo, Chem. Rev. 2011, 111, 7774-
7854; d) S. W. Kim, W. Zhang, M. J. Krische, Acc.
Chem. Res. 2017, 50, 2371-2380; e) N. K. Mishra, S.
Sharma, J. Park, S. Han, I. S. Kim, ACS Catal. 2017,
7, 2821-2847; f) Q. Cheng, H.-F. Tu, C. Zheng, J.-P.
Qu, G. Helmchen, S.-L. You, Chem. Rev. 2019, 119,
1855-1969.
The less hindered terminal position of (E)-II is then
added to benzalamalononitrile 2a to provide α-adduct
(E)-III as the major product. As minor products, α-
adduct (Z)-III and γ-adduct γ-III are generated from
(Z)-allylic radical (Z)-II, and by addition of allylic
radical II at the γ-position, respectively. Moreover,
allylic radicals II are converted into alkenes by the
proton source as byproducts, which were detected by
1H NMR spectroscopy. Adducts III are converted into
anion intermediate IV by single-electron reduction
from the reduced photocatalyst (Acr•-Mes), and the
photocatalyst is regenerated. Finally, the desired
product 3a is produced by the protonation of anion IV
by methanol. We confirmed the proton source by
performing an isotope labeling experiment using
deuterated methanol (CD3OD) (Scheme 2 a). In
addition, we performed on–off experiments and
determined quantum yield (Φ = 0.0077) to verify the
proposed mechanism (detailed in SI).[16]
[2] a) A. Hosomi, H. Sakurai, J. Am. Chem. Soc. 1977,
99, 1673-1675; b) H. Akira, I. Hirokazu, E.
Masahiko, S. Hideki, Chem. Lett. 1979, 8, 977-980;
c) G. Majetich, A. Casares, D. Chapman, M. Behnke,
J. Org. Chem. 1986, 51, 1745-1753; d) A.
Yanagisawa, S. Habaue, K. Yasue, H. Yamamoto, J.
Am. Chem. Soc. 1994, 116, 6130-6141; e) M. B.
Shaghafi, B. L. Kohn, E. R. Jarvo, Org. Lett. 2008,
10, 4743-4746; f) A. M. Dumas, E. Fillion, Org. Lett.
2009, 11, 1919-1922.
[3] a) M. Shizuka, M. L. Snapper, Angew. Chem. Int. Ed.
2008, 47, 5049-5051; b) J. D. Sieber, S. Liu, J. P.
Morken, J. Am. Chem. Soc. 2007, 129, 2214-2215;
c) J. D. Sieber, J. P. Morken, J. Am. Chem. Soc. 2008,
130, 4978-4983.
[4] a) Y. Yamamoto, S. Nishii, K. Maruyama, J. Chem.
Soc., Chem. Commun. 1985, 386-388; b) Y.
Yamamoto, S. Nishii, J. Org. Chem. 1988, 53, 3597-
3603; c) S. Araki, T. Horie, M. Kato, T. Hirashita, H.
Yamamura, M. Kawai, Tetrahedron Lett. 1999, 40,
2331-2334; d) I. Shibata, T. Kano, N. Kanazawa, S.
Fukuoka, A. Baba, Angew. Chem. Int. Ed. 2002, 41,
1389-1392.
[5] a) K. Mizuno, M. Ikeda, Y. Otsuji, Chem. Lett. 1988,
17, 1507-1510; b) K. Mizuno, T. Hayamizu, H.
Maeda, Pure Appl. Chem. 2003, 75, 1049-1054.
[6] a) H. Sakurai, Pure Appl. Chem. 1982, 54, 1-20; b)
H. Sakurai, Pure Appl. Chem. 1985, 57, 1759-1770;
c) G. G. Furin, O. A. Vyazankina, B. A. Gostevsky,
N. S. Vyazankin, Tetrahedron 1988, 44, 2675-2749;
d) A. Hosomi, Acc. Chem. Res. 1988, 21, 200-206.
[7] a) T. Traylor, H. Berwin, J. Jerkunica, M. Hall, Pure
Appl. Chem. 1972, 30, 599-606; b) R. S. Brown, D.
F. Eaton, A. Hosomi, T. G. Traylor, J. M. Wright, J.
Organomet. Chem. 1974, 66, 249-254.
In conclusion, we have developed a visible-light
photoredox-catalyzed
regioselective
and
stereoselective allylation of activated alkenes. This
reaction proceeds under mild conditions, i.e., metal-
and additive-free photoredox catalysis at room
temperature and tolerates various functional groups.
Especially, this conjugate allylation provides high α-
regioselectivities and (E)-stereoselectivities and
moderate to good yields. The investigation of the
mechanism provides evidence for a photoinduced
allylic radical-mediated reaction mechanism. These
results present a new strategy for the α-allylation
reaction using allylsilanes.
Experimental Section
General procedure for conjugate addition of allylsilanes
1 to alkenes 2
[8] a) H. Pellissier, L. Toupet, M. Santelli, J. Org. Chem.
1998, 63, 2148-2153; b) D. W. Terwilliger, D.
Trauner, J. Am. Chem. Soc. 2018, 140, 2748-2751.
[9] K. Ohga, P. S. Mariano, J. Am. Chem. Soc. 1982, 104,
617-619.
To a re-sealable pressure tube (13 × 100 mm) with a
magnetic stir bar was charged with 1 (0.6 mmol, 3.0 equiv),
2 (0.2 mmol, 1.0 equiv) and 9-mesityl-10-methylacridinium
perchlorate (Acr+-Mes) (0.82 mg, 0.002 mmol, 1.0 mol %)
under argon atmosphere. The reaction mixture was
dissolved by degassed methanol and DCE (1:1, 1 mL, 0.2 M
for 2). The mixture was irradiating with 2 × 5W blue LEDs
using our customized milligram scale reaction set up [as
shown in Figure S2 (a)] under constant stirring condition at
room temperature (20 ~ 30 o C) for 16 ~ 72 h. After finishing
the stipulated time, the solvent was removed under reduced
pressure and residue was purified by flash column
chromatography on silica gel to afford the corresponding
allylation product 3.
[10] a) T. P. Yoon, M. A. Ischay, J. N. Du, Nat. Chem.
2010, 2, 527-532; (b) J. M. R. Narayanam, C. R. J.
Stephenson, Chem. Soc. Rev. 2011, 40, 102-113; (c)
J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51,
6828-6838; d) C. K. Prier, D. A. Rankic, D. W. C.
MacMillan, Chem. Rev. 2013, 113, 5322-5363; e) S.
Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 2014,
12, 6059-6071; f) N. A. Romero, D. A. Nicewicz,
Chem. Rev. 2016, 116, 10075-10166; g) M. H. Shaw,
J. Twilton, D. W. C. MacMillan, J. Org. Chem. 2016,
81, 6898-6926; h) F. Strieth-Kalthoff, M. J. James,
M. Teders, L. Pitzer, F. Glorius, Chem. Soc. Rev.
2018, 47, 7190-7202; i) Q.-Q. Zhou, Y.-Q. Zou, L.-
Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2019, 58,
1586-1604.
Acknowledgements
This work was supported by the National Research Foundation of
Korea (NRF-2019R1C1C1004015) grant funded by the Korea
government (MSIT).
[11] a) R. Zhou, H. Liu, H. Tao, X. Yu, J. Wu, Chem. Sci.
2017, 8, 4654-4659; J. L. Schwarz, F. Schäfers, A.
Tlahuext-Aca, L. Lückemeier, F. Glorius, J. Am.
Chem. Soc. 2018, 140, 12705-12709.
[12] a) N. Khatun, M. J. Kim, S. K. Woo, Org. Lett. 2018,
20, 6239-6243; b) S. B. Nam, N. Khatun, Y. W.
Kang, B. Y. Park, S. K. Woo, Chem. Commun. 2020,
56, 2873-2876.
References
[1] a)Y. Yamamoto, N. Asao, Chem. Rev. 1993, 93,
2207-2293; b) S. E. Denmark, J. Fu, Chem. Rev.
2003, 103, 2763-2794; c) M. Yus, J. C. González-
5
This article is protected by copyright. All rights reserved.