Chemistry Letters Vol.32, No.4 (2003)
355
Table 2. Reactions of substituted conjugated olefins with tolue-
nesulfonyl azide in the presence of complex 1
pathway was strongly affected by the substitution pattern of the
olefin used.
References and Notes
1
a) J. T. Groves and T. Takahashi, J. Am. Chem. Soc., 105, 2073
(1983). b) D. Mansuy, J.-P. Mahy, A. Dcureault, G. Bedi, and P.
Battioni, J. Chem. Soc., Chem. Commun., 1984, 1161.
a) M. M. Faul and D. A. Evans, in ‘‘Asymmetric Oxidation
Reaction, Practical Approach in Chemistry,’’ ed. by T. Katsuki,
Oxford University Press, Oxford (2001), Chap. 2.7. b) E. N.
Jacobsen, in ‘‘Comprehensive Asymmetric Catalysis II,’’ ed. by
E. N. Jacobsen, A. Pfaltz, and H. Yamamoto, Springer, Berlin
(1999), Chap. 17.
2
3
4
a) T.-S. Lai, H.-L. Kwong, C.-M. Che, and S.-M. Peng, Chem.
Commun., 1997, 2373. b) X.-G. Zhou, X.-Q. Yu, J.-S. Huang, and
C.-M. Che, Chem. Commun., 1999, 2377.
a) K. Noda, N. Hosoya, R. Irie, Y. Ito, and T. Katsuki, Synlett,
1993, 469. b) H. Nishikori and T. Katsuki, Tetrahedron Lett., 37,
9245 (1996). c) S. Minakata, T. Ando, M. Nishimura, I. Ryu, and
K. Komatsu, Angew. Chem., Int. Ed. Engl., 37, 3392 (1998). d)
C.-M. Ho, T.-C. Lau, H.-L. Kwong, and W.-T. Wong, J. Chem.
Soc., Dalton Trans., 1999, 2411. e) Y. Kohmura and T. Katsuki,
Tetrahedron Lett., 42, 3339 (2001). f) J.-L. Liang, X.-Q. Yu, and
C.-M. Che, Chem. Commun., 2002, 124.
b
aIsolated yield. The number in the parentheses is the percent
conversion of olefin, which was calculated by 1H NMR analysis.
cDetermined by HPLC using DAICEL CHIRALCEL OD-H
d
(hexane-i-PrOH=2:1). Determined by HPLC using DAICEL
CHIRALCEL OD-H (hexane-i-PrOH=1:1). eDetermined by
HPLC using DAICEL CHIRALPAK AD (hexane-i-
PrOH=5:1). Absolute configuration was determined to be
22
D
1S,2R by comparison of the specific rotation: ½a þ 27:7 (c
5
a) D. A. Evans, K. A. Woerpel, N. M. Hinman, and M. M. Faul, J.
Am. Chem. Soc., 113, 726 (1991). b) D. A. Evans, M. M. Faul, M.
T. Bilodeau, B. A. Anderson, and D. M. Barnes, J. Am. Chem.
0.13, CHCl3); Lit.13 ½aD þ 11:6 (c 1, CHCl3) for 1S,2R-isomer
(52% ee).
Soc., 115, 5328 (1993). c) M. J. Sodergren, D. A. Alonso, and P.
¨
Ts
N
G. Andersson, Tetrahedron: Asymmetry, 8, 3563 (1997). d) S.
Tayler, J. Gullick, P. Mcmorn, D. Bethell, P. C. B. Page, F. E.
Hanock, F. King, and G. J. Hutichings, J. Chem. Soc., Perkin.
Trans. 2, 2001, 1714.
6
7
8
9
Z. Li, K. R. Conser, and E. N. Jacobsen, J. Am. Chem. Soc., 115,
5326 (1993).
C. J. Sanders, K. M. Gillespie, D. Bell, and P. Scott, J. Am. Chem.
Soc., 122, 7132 (2000).
D.-J. Cho, S.-J. Jeon, H.-S. Kim, C.-S. Cho, S.-C. Shim, and T.-J.
Kim, Tetrahedron: Asymmetry, 10, 3833 (1999).
Z. Li, R. W. Quan, and E. N. Jacobsen, J. Am. Chem. Soc., 117,
5889 (1995).
49%, 90% ee
not detected
1 (2 mol%)
+
MS 4A, CH2Cl2, r.t.
TsNH
2
Scheme 2.
10a) T. Bach and C. Ko rber, Eur. J. Org. Chem., 1999, 1033. b) T.
¨
11 M. Murakami, T. Uchida, and T. Katsuki, Tetrahedron Lett., 42,
7071 (2001).
¨
Bach and C. Korber, J. Org. Chem., 65, 2358 (2000).
These results suggest that olefins approach the Ru-nitrenoid
species in a perpendicular or skewed-perpendicular manner
which impedes interaction of the Z-substituent (RZ) with the
nitrene atom and the Z-substituent is reluctant to C–H amination
(Figure 1).15 The coefficient of the b-carbon of HOMO of the
styrene derivative is larger than that of the a-carbon. Therefore,
the allylic C–H bond on the E-substituent (RE) is considered to be
more activated than the allylic C–H bond on the geminal
substituent (RG). This explains why the E-substituent was
aminated in preference to the geminal substituent (Table 2, entry
2).
12 Typical experimental procedure is exemplified by the aziridina-
tion of styrene: under nitrogen atmosphere, a toluene solution
(0.25 mL) of complex 1 (1.9 mg, 2 mmol) was concentrated twice
azeotropically in vacuo. MS 4A (20mg) and styrene (10.4 mg,
0.1 mmol) were added to the residue. To the mixture was added
dichloromethane (0.5 mL) and the resulting suspension was
stirred for 0.5 h at room temperature. To the suspension was
added p-toluenesulfonyl azide (15.5 mL, 0.1 mmol) and stirred
for 24 h. The reaction mixture was directly chromatographed on
silica gel using hexane and ethyl acetate (hexane:ethyl acetate =
1/0-19/1-8/2) to give the corresponding aziridine (19.4 mg) in
71% yield. The enantiomeric excess of the product was
determined by HPLC analysis using DAICEL CHIRALCEL
OJ-H (hexane:i-PrOH = 1:1).
In conclusion, we were able to demonstrate that Ru(salen)
(CO) complex 1 served as the catalyst for enantioselective nitrene
transfer reaction (aziridination or C–H amination) using N-
toluenesulfonyl azide as the nitrene source and that the reaction
13 M. Shi and C.-J. Wang, Chirality, 14, 412 (2002).
14 It has been reported that metal nitrenoid species undergoes
aziridination and allylic C–H amination competitively: D. Evans,
M. M. Faul, and M. T. Bilodeeau, J. Org. Chem., 56, 6744 (1991).
15 A similar approaching model has been proposed for Mn(salen)-
catalyzed epoxidation via the corresponding oxo manganese
species: B. D. Brandes and E. N. Jacobsen, J. Org. Chem., 59,
4378 (1994).
RZ
RE
Ar
Ar
Ar
SO2Ar
SO2Ar
SO2Ar
N
N
RG
N
Ru
Ru
Ru
perpendicular approach
skewed-perpendicular approach
Figure 1. Proposal for substrate approach.