10.1002/anie.202013531
Angewandte Chemie International Edition
COMMUNICATION
the tumor of living mice at different post-injection timepoints. n.s.: not significant;
**p < 0.01 (n=3).
J. D. Stevenson, A. Dietel, N. R. Thomas, ChemComm 1999, 2105-2106;
d) R. C. Buxton, B. Edwards, R. R. Juo, J. C. Voyta, M. Tisdale, R. C.
Bethell, Anal. Biochem. 2000, 280, 291-300.
[15] L. S. Ryan, J. Gerberich, J. Cao, W. An, B. A. Jenkins, R. P. Mason, A.
R. Lippert, ACS Sens. 2019, 4, 1391-1398.
In conclusion, we have reported two new chemiluminophores
(DPD-S and DPD-Se) with the respective emission maxima at 760
and 780 nm, longer than existing chemiluminescent substrates. In
conjunction with the high brightness at 760 nm, the
chemiluminescence of DPD-S based probe enabled deeper
tissue penetration relative to the other two analogs. By caging its
phenol group using different responsive moieties, DPD-S was
developed into molecular chemiluminescence probes (NCPS and
NCPSg) for respective detection of ONOO− and β-gal with high
sensitivity and selectivity. Moreover, NCPSg was validated in cells
and tumor mouse model, proving its ability to sensitively detect β-
gal and differentiate its expression levels in different cells. Thus,
our study provides an atomic alternation approach to develop NIR
chemiluminophores that can serve as the general molecular
scaffolds for in vivo turn-on optical imaging of biomarkers.
[16] R. An, S. Wei, Z. Huang, F. Liu, D. Ye, Anal. Chem. 2019, 91, 13639-
13646.
[17] M. Roth-Konforti, C. Bauer, D. Shabat, Angew. Chem. Int. Ed. 2017, 56,
15633-15638; Angew. Chem. 2017, 129, 15839-15844.
[18] S. Son, M. Won, O. Green, N. Hananya, A. Sharma, Y. Jeon, J. H. Kwak,
J. L. Sessler, D. Shabat, J. S. Kim, Angew. Chem. Int. Ed. 2019, 58,
1739-1743; Angew. Chem. 2019, 131, 1753-1757.
[19] Z. Hai, J. Li, J. Wu, J. Xu, G. Liang, J. Am. Chem. Soc. 2017, 139, 1041-
1044.
[20] S. Ye, N. Hananya, O. Green, H. Chen, A. Q. Zhao, J. Shen, D. Shabat,
D. Yang, Angew. Chem. Int. Ed. 2020, 59, 14326-14330; Angew. Chem.
2020, 132, 14432-14436.
[21] a) J. Huang, J. Li, Y. Lyu, Q. Miao, K. Pu, Nat. Mater. 2019, 18, 1133-
1143; b) P. Cheng, Q. Miao, J. Li, J. Huang, C. Xie, K. Pu, J. Am. Chem.
Soc. 2019, 141, 10581-10584.
[22] J. Huang, J. Huang, P. Cheng, Y. Jiang, K. Pu, Adv. Funct. Mater. 2020,
30, 2003628.
Acknowledgements
[23] K. J. Bruemmer, O. Green, T. A. Su, D. Shabat, C. J. Chang, Angew.
Chem. Int. Ed. 2018, 57, 7508-7512; Angew. Chem. 2018, 130, 7630-
7634.
This work was supported by Nanyang Technological University
(Start-up Grant: M4081627) and Singapore Ministry of Education
Academic Research Fund Tier 1 (2019-T1-002-045, RG125/19)
and Tier 2 (MOE2018-T2-2-042).
[24] J. Huang, K. Pu, Angew. Chem. Int. Ed. 2020, 59, 11717-11731; Angew.
Chem. 2020, 132,11813-11827.
[25] Y. Yang, S. Wang, L. Lu, Q. Zhang, P. Yu, Y. Fan, F. Zhang, Angew.
Chem. Int. Ed. 2020, 59, 18380-18385; Angew. Chem. 2020, 132,18538-
18543.
Keywords: chemiluminescence • molecular probes • in vivo
[26] X. Ni, X. Zhang, X. Duan, H. L. Zheng, X. S. Xue, D. Ding, Nano Lett.
2018, 19, 318-330.
bioimaging •
[27] X. Zhen, C. Zhang, C. Xie, Q. Miao, K. L. Lim, K. Pu, ACS Nano 2016,
10, 6400-6409.
[1]
a) B. R. Smith, S. S. Gambhir, Chem. Rev. 2017, 117, 901-986; b)
Mariscal, A. Garcia, M. Carnero, E. Gomez, J. Fernandez-Crehuet,
BioTechniques. 1994, 16, 888-893.
[28] A. J. Shuhendler, K. Pu, L. Cui, J. P. Uetrecht, J. Rao, Nat. Biotechnol.
2014, 32, 373.
[29] D. Cui, J. Li, X. Zhao, K. Pu, R. Zhang, Adv. Mater. 2020, 32, 1906314.
[30] a) O. Green, S. Gnaim, R. Blau, A. Eldar-Boock, R. Satchi-Fainaro, D.
Shabat, J. Am. Chem. Soc. 2017, 139, 13243-13248; b) D. Shabat, O.
Green, WO 2018216013A1, 2018.
[2]
[3]
a) J. Li, K. Pu, Chem. Soc. Rev. 2019, 48, 38-71; b)Y. Jiang, K. Pu, Acc.
Chem. Res. 2018, 51, 1840-1849;.
Y. Su, J. R. Walker, Y. Park, T. P. Smith, L. X. Liu, M. P. Hall, L. Labanieh,
R. Hurst, D. C. Wang, L. P. Encell, N. Kim, F. Zhang, M. A. Kay, K. M.
Casey, R. G. Majzner, J. R. Cochran, C. L. Mackall, T. A. Kirk-land, M.
Z. Lin, Nat. Methods 2020, 17, 852-860.
[31] N. Hananya, A. Eldar Boock, C. R. Bauer, R. Satchi-Fainaro, D. Shabat,
J. Am. Chem. Soc. 2016, 138, 13438-13446.
[32] S. Li, Q. Deng, Y. Zhang, X. Li, G. Wen, X. Cui, Y. Wan, Y. Huang, J.
Chen, Z. Liu, L. Wang, C. S. Lee, Adv. Mater. 2020, 32, 2001146.
[33] G. Ferrer-Sueta, N. Campolo, M. Trujillo, S. Bartesaghi, S. n. Car-ballal,
N. Romero, B. Alvarez, R. Radi, Chem. Rev. 2018, 118, 1338-1408.
[34] K. Pu, A. J. Shuhendler, J. Rao., Angew. Chem. Int. Ed. 2013, 52,
10325–10329; Angew. Chem. 2013, 125, 10515-10519.
[35] M. L. Odyniec, S. J. Park, J. E. Gardiner, E. C. Webb, A. C. Sedgwick, J.
Yoon, S. D. Bull, H. M. Kim, T. D James, Chem. Sci. 2020, 11, 7329-
7334.
[4]
[5]
a) V. S. Lin, W. Chen, M. Xian, C. J. Chang, Chem. Soc. Rev. 2015, 44,
4596-4618; b) S. Beck, H. Koster, Anal. Chem. 1990, 62, 2258-2270; c)
A. V. Trofimov, R. F. Vasil'ev, K. Mielke, W. Adam, Photochem. Photobiol.
1995, 62, 35-43.
a) Q. Miao, C. Xie, X. Zhen, Y. Lyu, H. Duan, X. Liu, J. V. Jokerst, K. Pu,
Nat. Biotechnol. 2017, 35, 1102-1110; b) Y. Lyu, D. Cui, J. Huang, W.
Fan, Y. Miao, K. Pu, Angew. Chem. Int. Ed. 2019, 58, 4983-4987; Angew
Chem. 2019, 131, 5037-5041.
[6]
[7]
S. K. Sun, H. F. Wang, X. P. Yan, Acc. Chem. Res. 2018, 51, 1131-1143.
M. Vacher,; I. Fdez. Galván, B. W. Ding, S. Schramm, R. Berraud-Pache,
P. Naumov, N. Ferré, Y.J. Liu, I. Navizet, D. Roca-Sanjuán, W. J. Baader,
R. Lindh, Chem. Rev. 2018, 118, 6927-6974.
[36] J. Cao, W. An, A. G. Reeves, A. R. Lippert, Chem. Sci. 2018, 9, 2552-
2558.
[37] D. Asanuma, M. Sakabe, M. Kamiya, K. Yamamoto, J. Hiratake, M.
Ogawa, N. Kosaka, P. L. Choyke, T. Nagano, H. Kobayashi, Nat.
Commun. 2015, 6, 6463.
[8]
[9]
Q. Miao, K. Pu, Adv. Mater. 2018, 30, 1801778.
J. Yan, S. Lee, A. Zhang, J. Yoon, Chem. Soc. Rev. 2018, 47, 6900-6916.
[38] K. Gu, Y. Xu, H. Li, Z. Guo, S. Zhu, S. Zhu, P. Shi, T. D. James, H. Tian,
W. H. Zhu, J. Am. Chem. Soc. 2016, 138, 5334-5340.
[39] a) J. Zhang, P. Cheng, K. Pu, Bioconjug. Chem. 2019, 30, 2089-2101; b)
X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao, K. Pu. Angew. Chem. Int.
Ed., 2018, 57, 7804–7808; Angew. Chem. 2018, 130, 7930-7934.
[40] G. P. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E. E.
Medrano, M. Linskens, I. Rubelj, O. Pereira-Smith, Proc. Natl. Acad. Sci.
U. S. A. 1995, 92, 9363-9367.
[10] a) Y. Jiang, J. Huang, X. Zhen, Z. Zeng, J. Li, C. Xie, Q. Miao, J. Chen,
P. Chen, K. Pu, Nat. Commun. 2019, 10, 2064; b) Y. Lyu, D. Cui, J.
Huang, W. Fan, Y. Miao, K. Pu. Angew. Chem. Int. Ed., 2019, 58, 4983-
4987; Angew. Chem. 2019, 131, 5037-5041.
[11] M. Yang, J. Huang, J. Fan, J. Du, K. Pu, X. Peng, Chem. Soc. Rev. 2020,
49, DOI: 10.1039/D0CS00348D.
[12] N. Hananya, D. Shabat, Angew. Chem. Int. Ed. 2017, 56, 16454-16463;
Angew. Chem. 2017, 129, 16674-16683.
[13] J. Yang, W. Yin, R. Van, K. Yin, P. Wang, C. Zheng, B. Zhu, K. Ran, C.
Zhang, M. Kumar, Y. Shao, C. Ran, Nat. Commun. 2020, 11, 4052.
[14] a) N. Hananya, D. Shabat, ACS Cent. Sci. 2019, 5, 949-959; b) W. Adam,
I. Bronstein, B. Edwards, T. Engel, D. Reinhardt, F. W. Schneider, A. V.
Trofimov, R. F. Vasil'ev, J. Am. Chem. Soc. 1996, 118, 10400-10407; c)
4
This article is protected by copyright. All rights reserved.