research papers
Table 5
Hydrogen-bond geometry (A, ).
3.2.5. D-allo-Ile (6). Each enantiomer in the racemate dl-
allo-Ile forms crystals with two crystallographically indepen-
dent molecules. Further, the hydrogen-bond arrangement is
different from that found in (1), (3) and (5), Table 5. The two
independent molecules in d-allo-Ile (6) (Figs. 1d and 2d),
Ê
ꢂ
a
DÐH, HÁ Á ÁA and DÐHÁ Á ÁA based on experimental H-atom positions;
b
Ê
HÁ Á ÁA for NÐH bonds normalized to 1.030 A (Taylor & Kennard, 1983).
a
b
DÐHÁ Á ÁA
DÐH
HÁ Á ÁA
HÁ Á ÁA
DÐHÁ Á ÁA DÁ Á ÁA
1,1
differ in the side-chain conformation; in molecule A ꢈ (N1Ð
dl-Ile (1)
�
i
C2ÐC3ÐC5) is gauche , while in molecule B the corre-
N1ÐH1Á Á ÁO2
N1ÐH2Á Á ÁO1
N1ÐH3Á Á ÁO2
0.95 (1) 1.97 (1) 1.886
0.85 (1) 1.91 (1) 1.725
0.91 (1) 2.10 (1) 1.988
164 (1)
175 (1)
157 (1)
2.888 (1)
ii
iii
2.752 (1) sponding torsion is trans. Furthermore, the carboxylate group
2.955 (1)
is approximately symmetric in molecule A, but clearly asym-
metric in molecule B, Table 4.
3.2.6. L-Ile:L-allo-Ile (4). Only extremely thin needles were
obtained upon crystallization of (4) and the crystal shape for
this complex is different from those of the individual amino
l-Ile:d-allo-Ile (3)
N1AÐH1AÁ Á ÁO2A
N1AÐH2AÁ Á ÁO1A
N1AÐH3AÁ Á ÁO2B
i
1.06 (4) 1.86 (3) 1.889
0.92 (3) 1.83 (3) 1.712
0.79 (2) 2.19 (2) 1.972
0.84 (2) 2.06 (2) 1.879
0.89 (2) 1.85 (2) 1.715
0.93 (2) 2.09 (2) 2.001
162 (2)
175 (2)
159 (2)
164 (1)
177 (2)
156 (2)
2.887 (1)
2.740 (1)
2.943 (1)
2.878 (1)
ii
iv
v
N1BÐH1BÁ Á ÁO2B
N1BÐH2BÁ Á ÁO1B
2.744 (1) acids l-Ile (G oÈ rbitz & Dalhus, 1996) and l-allo-Ile, which both
N1BÐH3BÁ Á ÁO2A
dl-Ile:dl-allo-Ile (5)
2.967 (1)
form plate-shaped crystals. This could very well indicate that
the molecular arrangement, and hence the hydrogen-bond
2.888 (1) pattern, in the 1:1 complex (4) is different from that of the
i
N1ÐH1Á Á ÁO2
0.91 (2) 2.00 (2) 1.889
0.89 (2) 1.85 (2) 1.715
0.82 (2) 2.16 (2) 1.956
164 (2)
175 (2)
165 (2)
ii
N1ÐH2Á Á ÁO1
2.742 (1)
2.958 (1)
individual amino acid structures. Unfortunately, the needles
were much too thin for diffraction experiments with a
conventional in-house diffractometer.
3.2.7. Hydrogen bonding. Experimental and normalized
(Taylor & Kennard, 1983) hydrogen-bond geometries are
vi
N1ÐH3Á Á ÁO2
d-allo-Ile (6)
ii
N1AÐH1AÁ Á ÁO2A
0.88 (2) 1.98 (2) 1.828
0.89 (1) 1.88 (1) 1.740
0.88 (2) 2.13 (2) 2.009
0.85 (2) 2.05 (2) 1.874
0.90 (1) 2.00 (1) 1.871
0.89 (1) 1.88 (1) 1.739
169 (1)
175 (1)
145 (1)
165 (1)
167 (1)
172 (2)
2.845 (1)
2.768 (1)
2.891 (1)
ii
N1AÐH2AÁ Á ÁO1B
vii
N1AÐH3AÁ Á ÁO1B
ii
N1BÐH1BÁ Á ÁO2B
2.879 (1) listed in Table 5. The hydrogen-bond patterns in (1), (3) and
i
N1BÐH2BÁ Á ÁO2A
2.881 (1)
2.761 (1)
(5) are isostructural, apart from the increased number of
viii
N1BÐH3BÁ Á ÁO1A
hydrogen bonds due to the lower symmetry in (3). This
hydrogen-bond arrangement recurs in other racemates of
hydrophobic amino acids with branched side chains; dl-
leucine (Di Blasio et al., 1975) and dl-valine (triclinic poly-
morph: Dalhus & G oÈ rbitz, 1996; monoclinic polymorph:
²
Symmetry codes: (i) x 1; y; z; (ii) x; y � 1; z; (iii) � x 1; � y 1; � z 1; (iv)
1
2
x � 1; y; z; (v) x; y 1; z; (vi) � x; � y 1; � z 1; (vii) � x 2; y � ; � z 1; (viii)
1
2
�
x 2; y ; � z 1.
ii
Ê
0
The short C6Á Á ÁC6 distance of 3.315 (6) A in (5) (Fig. 2a)
must then be increased to permit the presence of methyl
groups in all the C6 positions. Indeed, this is precisely what
Mallikarjunan & Thyagaraja Rao, 1969). The amino H1 (C Ð
ꢀ
C ÐNÐH = gauche ) and H2 (C ÐC ÐNÐH trans) atoms in
+
0
ꢀ
(1), (3) and (5) have normalized hydrogen-bond distances
within ranges of 0.010 A (1.879±1.889 A) and 0.013 A (1.712±
iv
happens in the crystal of dl-Ile; the C6Á Á ÁC6 [symmetry code:
Ê
Ê
Ê
Ê
(
3
iv) � x 1; � y; � z 2] distance is increased by 0.5 A to
Ê
.725 A), respectively.
1
Ê
.810 (3) A (Fig. 2c).
This repositioning of the terminal C6 methyl groups is
The purchase of a Siemens SMART diffractometer was
made possible through ®nancial support from The Research
Council of Norway (NFR).
feasible without gross alterations in the molecular arrange-
ment (Figs. 2a and c) and the hydrogen-bond arrangement in
the hydrophilic layer is left intact, Table 5.
3
structure of (5) is used as a model template for the generation
.2.4. Spontaneous resolution of DL-allo-Ile (2). If the
References
0
of the structure of dl-allo-Ile ± by occupying all C6 positions
and leaving all the C6 positions vacant ± a molecular packing
Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31±
3
7.
Benedetti, E., Pedone, C. & Sirigu, A. (1973). Acta Cryst. B29, 730±
33.
0
0
ii
Ê
with a short C6 Á Á ÁC6 contact of only 2.45 A is obtained (Fig.
7
iv
Ê
2
a). In dl-Ile a shift of 0.5 A in the C6Á Á ÁC6 interaction was
Dalhus, B. & G oÈ rbitz, C. H. (1996). Acta Cryst. C52, 1759±1761.
Dalhus, B. & G oÈ rbitz, C. H. (1999). Acta Cryst. C55, 1547±1555.
Di Blasio, B., Pedone, C. & Sirigu, A. (1975). Acta Cryst. B31, 601±
achieved by minor modi®cations in the molecular packing,
Ê
while in dl-allo-Ile the required shift is approximately 1.5 A.
6
02.
The observed separation of the enantiomers upon crystal-
lization suggests that it is not possible to rearrange the
molecules in this hypothetical dl-allo-Ile structure and elim-
G oÈ rbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464±1466.
Mallikarjunan, M. & Thyagaraja Rao, S. (1969). Acta Cryst. B25, 296±
303.
0
0
ii
inate the unfavorable C6 Á Á ÁC6
interaction without
Sheldrick, G. M. (1995). SHELXTL. Version 5.03. Siemens
Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1996). Sadabs. University of G oÈ ttingen, Germany.
Siemens (1995). SMART/SAINT. Siemens Analytical X-ray Instru-
ments Inc., Madison, Wisconsin, USA.
Taylor, R. & Kennard, O. (1983). Acta Cryst. B39, 133±138.
Varughese, K. I. & Srinivasan, R. (1975). J. Cryst. Mol. Struct. 5, 317±
328.
disrupting the hydrogen-bond pattern. It is thus possible to
account for the spontaneous resolution of the enantiomers in
dl-allo-Ile at the molecular level. The molecular arrangement
in the enantiomeric structure (6), with an alternative
hydrogen-bond arrangement, is energetically favored (Fig.
2d).
Acta Cryst. (2000). B56, 720±727
Dalhus and G oÈ rbitz ꢀ 2-Amino-3-methylpentanoic acid 727