The Journal of Organic Chemistry
Page 10 of 11
Oppolzer, W.; Spivey, A. C.; Evidente, A.; Kornienko, A.; Kiss, R.;
Synthesis of (-)-Mesembrine. Chem. Sci., 2011, 2, 1519; c) Du, K.;
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
Kinzy, T. G.; Mathieu, V. Amaryllidaceae and Sceletium Alkaloids.
Nat. Prod. Rep., 2013, 30, 849–868; d) Bastida, J.; Berkov, S.; Torras,
L.; Pigni, N. B.; De Andradre, J. P.; Martínez, V.; Codina C.; Vi-
ladomat F.; Chemical and Biological Aspects of Amaryllidaceae Al-
kaloids, 2011, vol. 661.
(4) a) Refaat, J.; Kamel, M. S.; Ramadan, M. A.; Ali, A. A. Cri-
num; An Endless Source of Bioactive Principles: A Review. Part III;
Crinum Alkaloids: Belladine-, Galanthamine-, Lycorine-, Tazettine-
type Alkaloids and Other Minor types. Int. J. Pharm. Sci. Res., 2012,
Yang, H.; Guo, P.; Feng, L.; Xu, G.; Zhou, Q.; Chung, L. W.; Tang,
W. Efficient Syntheses of (-)-Crinine and (-)-Aspidospermidine, and
the Formal Synthesis of (-)-Minfiensine by Enantioselective Intramo-
lecular Dearomative Cyclization. Chem. Sci., 2017, 8, 6247–6256.
(10) a) Song, Z. L.; Wang, B. M.; Tu, Y. Q.; Fan, C. A.; Zhang, S.
Y. A General Efficient Strategy for cis-3a-Aryloctahydroindole Alka-
2
loids via Stereocontrolled ZnBr -Catalyzed Rearrangement of 2,3-
Aziridino Alcohols. Org. Lett., 2003, 5, 2319–2321; b) Gan, P.;
Smith, M. W.; Braffman, N. R.; Snyder, S. A. Pyrone Diels–Alder
Routes to Indolines and Hydroindolines: Syntheses of Gracilamine,
3
, 3630–3638; b) Refaat, J.; Kamel, M. S.; Ramadan, M. A.; Ali, A.
7
A. Crinum; An Endless Source of Bioactive Principles: A Review.
Part V. Biological Profile. Int. J. Pharm. Sci. Res., 2013, 4, 1239–
Mesembrine, and Δ ‐Mesembrenone. Angew. Chem. Int. Ed., 2016,
55, 3625–3630; c) Guerard, K. C.; Sabot, C.; Racicot, L.; Canesi, S.
Oxidative Friedel−Crafts Reaction and its Application to the Total
Syntheses of Amaryllidaceae Alkaloids. J. Org. Chem., 2009, 74,
2039–2045; d) Raghavan, S.; Ravi, A. Synthesis of Crinane Utilizing
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
252; c) Ghosal, S.; Saini, K. S.; Razdan, S. Crinum Alkaloids: Their
Chemistry and Biology. Phytochemistry, 1985, 24, 2141–2156; d)
López, S.; Bastida, J.; Viladomat, F.; Codina, C. Acetylcholinesterase
Inhibitory Activity of some Amaryllidaceae Alkaloids and Narcissus
Extracts. Life Sci., 2002, 71, 2521–2529; e) Henry, S.; Kidner, R.;
Reisenauer, M. R.; Magedov, I. V.; Kiss, R.; Mathieu, V.; Lefranc,
F.; Dasari, R.; Evidente, A.; Yu, X.; Ma, X.; Pertsemlidis, A.; Cencic,
R.; Pelletier, J.; Cavazos, D. A.; Brenner, A. J.; Aksenov, A. V.;
Rogelj, S.; Kornienko A.; Frolova, L. V. 5,10b-Ethanophenanthridine
Amaryllidaceae Alkaloids Inspire the Discovery of Novel Bicyclic
ring Systems with Activity against Drug Resistant Cancer Cells. Eur.
J. Med. Chem., 2016, 120, 313–328; f) Likhitwitayawuid, K.; Anger-
hofer, C. K.; Chai, H.; Pezzuto, J. M.; Cordell, G. A. Cytotoxic and
Antimalarial Alkaloids from the Bulbs of Crinum amabile. J. Nat.
Prod., 1993, 56, 1331–1338.
an Allylic Sulfoxide for the Construction of
a Hydroindole
ring via Vinylogous C–N Bond Formation. Org. Biomol. Chem.,
2016, 14, 10222–10229; e) Overman, L. E.; Sugai, S. Total Synthesis
of (-)-Crinine. Use of Tandem Cationic Aza‐Cope Rearrange-
ment/Mannich Cyclizations for the Synthesis of Enantiomerically
Pure Amaryllidaceae Alkaloids. Helv. Chim. Acta, 1985, 68, 745–
749; f) Pearson, W. H.; Lovering, F. E. Assembly of 3a-
Arylperhydroindoles by the Intramolecular Cycloaddition of 2-
Azaallyl Anions with Alkenes. Total Syntheses of (±)-Crinine, (±)-6-
Epicrinine, (-)-Amabiline, and (-)-Augustamine. J. Org. Chem., 1998,
63, 3607–3617.
(11) Bao, X.; Wang, Q.; Zhu, J. Palladium‐Catalyzed Enantioselec-
tive Desymmetrizing Aza‐Wacker Reaction: Development and Appli-
cation to the Total Synthesis of (-)‐Mesembrane and (+)‐Crinane.
Angew. Chem. Int. Ed., 2018, 57, 1995 –1999.
(5) a) Berkov, S.; Codina, C.; Bastida, J. The Genus Galanthus: A
Source of Bioactive Compounds. Phytochem. - A Glob. Perspect. role
Nutr. Heal., 2012, 235–254; b) Marco-Contelles, J.; Carreiras, C.;
Rodriguez, C.; Villarroya, M.; Garcia, A. G. Synthesis and Pharma-
cology of Galantamine. Chem. Rev., 2006, 106, 116–133.
(12) a) Denmark, S. E.; Marcin, L. R. Asymmetric Construction of
a Quaternary Carbon Center by Tandem [4 + 2]/[3 + 2] Cycloaddition
of a Nitroalkene. The Total Synthesis of (-)-Mesembrine. J. Org.
Chem., 1997, 62, 1675–1686; b) Taber, D. F.; Neubert, T. D. Enanti-
oselective Construction of Cyclic Quaternary Centers:ꢀ (-)-
Mesembrine. J. Org. Chem., 2001, 66, 143–147; c) Taber, D. F.; He,
Y. Opening of Aryl-Substituted Epoxides To Form Quaternary Stere-
ogenic Centers:ꢀ Synthesis of (-)-Mesembrine. J. Org. Chem., 2005,
70, 7711–7714; d) Arns, S.; Lebrun, M.-E.; Grise, C. M.; Denissova,
I.; Barriault, L. Diastereoselective Construction of Quaternary Car-
bons Directed via Macrocyclic Ring Conformation:ꢀ Formal Synthesis
of (-)-Mesembrine. J. Org. Chem., 2007, 72, 9314–9322; e) Kano, T.;
Hayashi, Y.; Maruoka, K. Construction of a Chiral Quaternary Car-
bon Center by Catalytic Asymmetric Alkylation of 2-
Arylcyclohexanones under Phase-Transfer Conditions. J. Am. Chem.
Soc., 2013, 135, 7134–7137; f) Paul, T.; Malachowski, W. P.; Lee, J.
The Enantioselective Birch−Cope Sequence for the Synthesis of Car-
bocyclic Quaternary Stereocenters. Application to the Synthesis of
(+)-Mesembrine. Org. Lett., 2006, 8, 4007–4010; g) Ozaki, T.; Koba-
yashi, Y. Synthesis of (-)-Mesembrine Using the Quaternary Carbon-
Constructing Allylic Substitution. Org. Chem. Front., 2015, 2, 328–
335.
(13) a) Nishimata, T.; Sato, Y.; Mori, M. Palladium-Catalyzed
Asymmetric Allylic Substitution of 2-Arylcyclohexenol Derivatives:ꢀ
Asymmetric Total Syntheses of (+)-Crinamine, (-)-Haemanthidine,
and (+)-Pretazettine. J. Org. Chem., 2004, 69, 1837–1843; b) Petit, L.;
Banwell, M. G.; Willis, A. C. The Total Synthesis of the Crinine
Alkaloid Hamayne via a Pd[0]-Catalyzed Intramolecular Alder-Ene
Reaction. Org. Lett., 2011, 13, 5800–5803; c) Mori, M.; Kuroda, S.;
Zhang, C.-S.; Sato, Y. Total Syntheses of (-)-Mesembrane and (-)-
Mesembrine via Palladium-Catalyzed Enantioselective Allylic Substi-
tution and Zirconium-Promoted Cyclization. J. Org. Chem., 1997, 62,
3263–3270; d) Zhang, Q.-Q.; Xie, J.-H.; Yang, X.-H.; Xie, J.-B.;
Zhou, Q.-L. Iridium-Catalyzed Asymmetric Hydrogenation of α-
Substituted α,β-Unsaturated Acyclic Ketones: Enantioselective Total
Synthesis of (-)-Mesembrine. Org. Lett., 2012, 14, 6158–6161; e)
Zuo, X.-D.; Guo, S.-M.; Yang, R.; Xie, J.-H.; Zhou, Q.-L. Bioinspired
Enantioselective Synthesis of Crinine-type Alkaloids via Iridium-
Catalyzed Asymmetric Hydrogenation of Enones. Chem. Sci., 2017,
8, 6202–6206; f) Wang, L.-N.; Cui, Q.; Yu, Z.-X. A Concise Total
(6) a) Das, M. K.; De, S.; Bisai, A. Concise Total Syntheses of (±)-
Mesembrane and (±)-Crinane. Org. Biomol. Chem., 2015, 13, 3585–
3
588; b) Stevens, R. V.; Lesko, P. M.; Lapalme, R. General Methods
of Alkaloid Synthesis. XI. Total Synthesis of the Sceletium Alkaloid
A-4 and an Improved Synthesis of (±)-Mesembrine. J. Org. Chem.,
1975, 40, 3495–3498; c) Stevens, R. V.; Wentland, M. P. Thermal
Rearrangement of Cyclopropylimines. IV. Total Synthesis of dl-
Mesembrine. J. Am. Chem. Soc., 1968, 90, 5580–5583; d) Wunberg,
J. B. P. A.; Speckamp, W. N. Total Syntheses of dl-Mesembrine, dl-
Dihydromaritidine and dl-epi-Dihydromaritidine via Regioselective
+
NaBH
4
/H Reduction of Imides. Tetrahedron, 1978, 34, 2579–2586;
e) Keck, G. E.; Webb, R. R. Alkaloid Synthesis via Intramolecular
Ene reaction. 2. Application to dl-Mesembrine and dl-
Dihydromaritidine. J. Org. Chem., 1982, 47, 1302-1309.
(
7) a) Martin, S. F.; Campbell, C. L. Total Syntheses of (±)-Crinine
and (±)-Buphanisine. J. Org. Chem., 1988, 53, 3184–3190; b) Pear-
son, W. H.; Lovering, F. E. Application of the 2-Azaallyl anion Cy-
cloaddition Method to Syntheses of (±)-Crinine and (±)-6-Epicrinine.
Tetrahedron Lett., 1994, 35, 9173–9176; c) Muxfeldt, H.; Schneider,
R. S.; Mooberry, J. B. A Total Synthesis of (±)-Crinine. J. Am. Chem.
Soc., 1966, 88, 3670–3671; d) Yang, L.; Wang, X.; Pan, Z.; Zhou, M.;
Chen, W.; Yang, X. Synthetic Studies Towards Crinine-Type Amaryl-
lidaceae Alkaloids: Synthesis of (±)-Oxocrinine and Formal Synthesis
of (±)-Crinine. Synlett., 2011, 2, 207–210; e) Whitlock, Jr., H. W.;
Smith, G. L. Total Synthesis of dl-Crinine. J. Am. Chem. Soc., 1967,
8
9, 3600–3603.
8) a) Bru, C.; Thal, C.; Guillou, C. Concise Total Synthesis of (±)-
(
Maritidine. Org. Lett., 2003, 5, 1845–1846; b) Pandey, G.; Gupta, N.
R.; Pimpalpalle, M. Stereoselective One-Step Construction of Vicinal
Quaternary and
Tertiary Stereocenters
of
the
5,10b-
Ethanophenanthridine Skeleton: Total Synthesis of (±)-Maritidine.
Org. Lett., 2009, 11, 2547–2550; c) Roe, C.; Stephenson, G. R. Elec-
trophilic C12 Building Blocks for Alkaloids:ꢀ Formal Total Synthesis
of (±)-Maritidine. Org. Lett. 2008, 10, 189–192.
(
9) a) Bru, C.; Guillou, C. Total Syntheses of Crinine and Related
Alkaloids. Tetrahedron, 2006, 62, 9043–9048; b) Gu, Q.; You, S.-L.
Desymmetrization of Cyclohexadienones via Cinchonine Derived
Thiourea-catalyzed Enantioselective Aza-Michael Reaction and Total
ACS Paragon Plus Environment