April 1998
SYNTHESIS
551
washed with sat. aq NaHCO (15 mL) and brine (15 mL). The aqueous
The National Institutes of Health (GM 32718), National Science
Foundation and the Welch Foundation are thanked for their support
of this research. Rhône Poulenc Rorer are thanked for a graduate fel-
lowship to J.L.
3
phase was extracted with Et O (15 mL) and EtOAc (15 mL). The com-
2
bined extracts were dried (Na SO ), and evaporated in vacuo. The crude
2
4
product was purified by flash chromatography over silica gel eluting with
hexanes/EtOAc (9:1) to give 40 (83 mg, 17%) and 41 (331 mg, 58%).
4
0:
(
1) Magnus, P.; Lacour, J.; Evans, P. A.; Roe, M. B.; Hulme, C.
–
1
IR (CH Cl ) ν = 3049, 2946, 2864, 1568 cm .
2
2
J. Am. Chem. Soc. 1996, 118, 3406.
1
H NMR (300 MHz, CDCl ) δ = 8.19–8.16 (1H, m), 7.80–7.76 (1H,
3
(2) Magnus, P.; Lacour, J. J. Am. Chem. Soc. 1992, 114, 3993.
3) Magnus, P.; Lacour, J.; Weber, W. J. Am. Chem. Soc. 1993,
15, 9347.
m), 7.50–7.39 (4H, m), 4.49 (1H, t, J = 4.2 Hz), 3.83–3.73 (1H, m),
(
3
2
.70–3.60 (1H, m), 3.48–3.39 (1H, m), 3.27 (1H, dt, J = 13.3, 4.3 Hz),
.99 (3H, s), 2.09–2.05 (2H, m), 1.31 (3H, t, J = 7.0 Hz).
C NMR (75 MHz, CDCl ) δ = 145.3, 134.5, 128.1, 127.6, 125.6,
1
Magnus, P.; Hulme, C.; Weber, W. J. Am. Chem. Soc. 1994,
116, 4501.
1
3
3
1
24.8, 124.5, 124.4, 121.9, 72.9, 63.6, 47.7, 44.0, 22.2, 15.7.
P. Magnus, P.; Hulme, C. Tetrahedron Lett. 1994, 35, 8097.
+
HRMS (M ) calcd for C H NO 241.147. Found 241.147.
1
6
19
(4) Kita, Y.; Tohma, H.; Inagaki, M.; Hatanaka, K.; Yakura, T.
Tetrahedron Lett. 1991, 34, 4321.
Kita, Y.; Tohma, H.; Hatanaka, K.; Takada, T.; Fujita, S.; Mi-
toh, S.; Sakurai, H.; Oka, S. J. Am. Chem. Soc. 1994, 116, 3684.
(5) Nelsen, S. F. Nitrogen-Centered Radicals in Free-Radicals,
Kochi, J. K. J., Ed.; Wiley: New York 1973.
4
1:
IR (film): ν = 3048, 2976, 2799, 2101, 1622, 1593 cm .
H NMR (300 MHz, CDCl ) δ = 8.24–8.21 (1H, m), 7.84–7.81 (1H,
–
1
1
3
m), 7.57–7.37 (5H, m), 7.13 (1H, d, J = 7.5 Hz), 4.50 (1H, t, J =
6
2
.1 Hz), 3.82–3.76 (1H, m), 3.46–3.40 (1H, m), 3.31–3.20 (2H, m),
.85 (3H, s), 2.03 (2H, q, J = 6.7 Hz), 1.17 (3H, t, J = 7.0 Hz).
C NMR (75 MHz, CDCl ) δ = 149.4, 134.8, 129.6, 128.2, 125.7,
Würster, C.; Sendther, R. Ber. 1879, 12, 1803.
1
3
(6) Zhdankin, V. V.; McSherry, M.; Mismash, B.; Bolz, J. T.;
3
Woodward, J. K.; Arbit, R. M.; Erickson, S. Tetrahedron Lett.
1
25.6, 125.3, 123.6, 123.5, 115.9, 90.9, 64.8, 51.6, 43.3, 32.6, 14.8.
+
1
997, 38, 21.
HRMS (M ) calcd for C H N O 284.164. Found 284.163.
1
6 20 4
•
3
(7) PhI(OAc) /NaN has been proposed as a source of N radicals,
2
3
Fontana, F.; Minisci, F.; Yan, Y. M.; Zhao, L, Tetrahedron Lett.
993, 34, 2517.
For a comprehensive survey of hypervalent iodine chemistry,
Varvoglis, A. The Organic Chemistry of Polycoordinated
Iodine, VCH: New York, 1992.
Electrochemical oxidation of N,N-dimethylanilines, Shono, T.;
Matsumura, Y.; Inoue, K.; Ohmizu, H.; Kashimura, S. J. Am.
Chem. Soc. 1982, 104, 5753.
Chlorine dioxide oxidation of amines, Chen, C-K.; Hortmann,
A. G.; Marzabadi, M. R. J. Am. Chem. Soc. 1988, 110, 4829.
4
-(tert-Butyldimethylsiloxy)-7-methoxy-N-methyl-4-phenylqui-
1
noline (42) and 4-(tert-Butyldimethylsiloxy)-5-methoxy-N-meth-
yl-4-phenylquinoline (43):
Synthesized in an analogous manner to 40 using the above procedure
in CH Cl with LiBPh (299 mg, 0.50 mmol, 1.0 eq) as the Lewis ac-
2
2
4
id, from 7 (76 mg, 0.50 mmol), iodosylbenzene (116 mg, 0.75 mmol),
trimethylsilylazide (100 µL, 0.75 mmol), and 1-t-butyldimethyl-
silyl(oxy) styrene (176 mg, 0.75 mmol). The crude product was puri-
fied by flash chromatography over silica gel eluting with hexanes/
EtOAc (17:3), and Kugelrohr distillation at 110˚C under high vacuum
for 2 h to give 42 (90 mg, 47%) and 43 (15 mg, 8%).
(
Alkylperoxy)iodinane oxidation of amines, Ochiai, M.; Ito, T.;
Masaki, Y.; Shiro, M. J. Am. Chem. Soc. 1992, 114, 6269.
Photoinduced electron transfer, Pandey, G.; Kumaraswamy, G.;
Reddy, P. Y. Tetrahedron, 1992, 48, 8295.
4
2:
IR (film): ν = 3086, 3047, 3026, 2928, 2854, 1620 cm .
H NMR (300 MHz, CDCl ) δ = 7.43 (2H, m), 7.33–7.23 (3H, m),
.73 (1H, d, J = 8.5 Hz), 6.18 (1H, d, J = 2.45 Hz), 6.10 (1H, dd, J =
.5, 2.45 Hz), 3.80 (3H, s), 3.52 (1H, dt, J = 3.6, 11.5 Hz), 3.13 (1H,
–
1
1
6
8
For the oxidation of amines using PhIO, see: Moriarty, R. M.;
Vaid, R. K.; Duncan, M. P.; Ochiai, M.; Inenaga, M.; Nagao, Y.
Tetrahedron Lett. 1988, 29, 6913.
3
dt, J = 11.5, 4.1 Hz), 2.15 (1H, dt, J = 4.3, 13.0 Hz), 2.02 (1H, dt, J =
3.0, 4.3 Hz), 0.97 (9H, s), –0.07 (3H, s), –0.51 (3H, s).
Ochiai, M.; Inenaga, M.; Nagao, Y.; Moriarty, R. M.; Vaid, R.
K.; Duncan, M. P. Tetrahedron Lett. 1988, 29, 6917.
Davis, G. T.; Rosenblatt, D. H. Tetrahedron Lett. 1968, 4085.
Butler, R. N. Chem. Rev. 1984, 84, 249.
Porta, F.; Crotti, C.; Cenini, S.; Palmisano, G. J. Mol. Cat. 1989,
50, 333.
1
1
3
C NMR (75 MHz, CDCl ) δ = 160.6, 149.3, 148.5, 132.0, 127.4,
3
1
1
26.7, 126.2, 119.3, 100.0, 97.1, 75.3, 55.0, 47.4, 40.9, 39.4, 26.2,
8.7, –2.7, –3.9.
+
HRMS (M ) calcd for C H NOSi 383.228. Found 383.227.
2
3 33
These authors report the dehydrogenation of primary and secon-
dary benzylamines with PhIO to give the corresponding imines.
Barton, D. H. R.; Billion, A.; Boivin, J. Tetrahedron Lett. 1985,
4
3:
IR (film): ν = 3052, 2956, 2929, 2884, 2854, 1599 cm .
H NMR (300 MHz, CDCl ) δ = 7.29–7.07 (6H, m), 6.34 (1H, d, J =
–
1
1
3
26, 1229.
8
(
.5 Hz), 6.10 (1H, d, J = 8.1 Hz), 3.40 (1H, dt, J = 4.2, 11.2 Hz), 3.13
3H, s), 3.05–2.94 (1H, m), 2.96 (3H, s), 2.05–1.98 (2H, m), 0.94 (9H,
s), –0.11 (3H, s), –0.46 (3H, s).
(
8) The primary kinetic isotope effect (PKIE) is modest, and similar
to that observed for the classical Hoffmann β-elimination.
Saunders, W. H.; Cockerill, A. F. Elimination Reactions, Wiley:
New York, 1973.
9) For recent and exhaustive reviews on Mannich bases, see:
Tramontini, M.; Angiolini, L. Tetrahedron 1990, 46, 1791.
Heaney, H. The Bimolecular Aromatic Mannich Reaction in
Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I.
Eds.; Vol. 2, 953. Pergamon: New York 1991.
1
3
C NMR (75 MHz, CDCl ) δ = 158.6, 152.2, 149.0, 129.5, 127.1,
3
1
1
24.8, 124.1, 114.5, 105.1, 100.4, 74.0, 53.9, 47.4, 43.8, 40.3, 26.3,
9.0, –3.23, –3.91.
(
+
HRMS (M ) calcd for C H NOSi 383.228. Found 383.228.
2
3 33
Compound 4:
Synthesized in an analogous manner to 37 from 3 (158 mg, 0.39 mmol,
.0 eq). The product was purified by flash chromatography over Florisil
eluting with hexanes/EtOAc (9:1) to give 4 (104 mg, 60%).
1
Grieco, P. A.; Bashas, A. J. Org. Chem. 1987, 52, 1378.
(
(
10) Glacet, C.; Couturier, J. C. Bull. Chim. Soc. Fr. 1962, 2097.
11) For methodology using aminomethylbenzotriazoles: Katritzky,
A. R.; Rachwal, S.; Hitchings, G. J. Tetrahedron 1991, 47, 2683.
Katritzky, A. R.; Rachwal, B.; Rachwal, S. J. Org. Chem. 1993,
–
1
IR (film): ν = 2943, 2868, 1664, 1646, 1615 cm .
1
H NMR (300 MHz, C D ) δ = 7.38 (1H, d, J = 8.4 Hz), 6.38 (1H, dd,
6
6
J = 8.4, 2.3 Hz), 6.20 (1H, d, J = 2.3 Hz), 5.72–5.59 (1H, m), 5.15
1H, d, J = 3.4 Hz), 4.99–4.93 (2H, m), 4.30–4.20 (1H, m), 3.47 (3H,
s), 3.15 (2H, t, J = 7.4 Hz), 2.60 (3H, s), 2.22–2.07 (4H, m), 1.77–1.57
3H, m), 1.44–1.35 (1H, m), 1.20–1.02 (21H, m).
(
5
8, 812.
Katritzky, A. R.; Rachwal, S.; Rachwal, B.; Steel, P. J. J. Org.
Chem. 1992, 57, 4932.
(
1
3
C NMR (75 MHz, C D ) δ = 158.2, 152.0, 149.3, 136.4, 129.5,
(12) Shono, T.; Matsumara, Y.; Inoue, K.; Ohmizu, H.; Kashimura,
S. J. Am. Chem. Soc. 1982, 104, 5753.
6
6
1
3
23.7, 116.2, 107.6, 105.2, 96.6, 54.8, 52.9, 38.4, 33.6, 31.5, 31.1,
0.4, 21.7, 18.3, 13.1.
Grieco, P. A.; Bahsas, A. Tetrahedron Lett. 1988, 29, 5855.
Hesse, K.-D. Liebigs Ann. Chem. 1970, 741, 117.
+
HRMS (M ) calcd for C H NO Si 443.322. Found 443.322.
2
7
45
2