Angewandte Chemie International Edition
10.1002/anie.202006893
COMMUNICATION
[
26]
levodione.
At an applied bias above 0.9 V, only a slight
[14] J. Su, Y. Yang, G. Xia, J. Chen, P. Jiang, Q. Chen, Nat. Commun. 2017,
8, 14969.
increase in yield was observed in a similar trend to ABPE,
indicating inefficient energy transfer at the high voltage.
The biocatalytic PEC system requires an applied bias of at
least 0.8 V to drive the complete reaction with an optimized
conversion rate. Future research will address limitations
[
27]
[15] J. E. Park, S. Kim, O.-H. Kim, C.-Y. Ahn, M.-J. Kim, S. Y. Kang, T. I.
Jeon, J.-G. Shim, D. W. Lee, J. H. Lee, Y.-H. Cho, Y.-E. Sung, Nano
Energy 2019, 58, 158-166.
[
[
16] T. W. Kim, K.-S. Choi, Science 2014, 343, 990-994.
17] Y. Zhang, S. Tsitkov, H. Hess, Nat. Commun. 2016, 7, 13982.
associated with water oxidation for H
requirement of an external applied bias. For example, a PEC
system with a dual band gap configuration by coupling a BiVO
based photoanode with suitable semiconductor (or
2
O
2
generation and the
[18] M. Zhou, J. Bao, Y. Xu, J. Zhang, J. Xie, M. Guan, C. Wang, L. Wen, Y.
Lei, Y. Xie, ACS Nano 2014, 8, 7088-7098.
-
[19] a) Y. Park, D. Kang, K. S. Choi, PCCP 2014, 16, 1238-1246; b) M.
Huang, J. Bian, W. Xiong, C. Huang, R. Zhang, J. Mater. Chem. A 2018,
4
a
6, 3602-3609.
photovoltaic) could reduce the additional bias to drive
biocatalytic reactions by enhanced light harvesting with
[
[
20] J. H. Kim, J. S. Lee, Adv. Mater. 2019, 31, 1806938.
21] X. Shi, Y. Zhang, S. Siahrostami, X. Zheng, Adv. Energy Mater. 2018, 8,
[
28]
complementary light absorption. We believe that the scope of
our approach can be expanded to other redox enzymatic
reactions through the regeneration of nicotinamide cofactors [i.e.,
1801158.
[
22] W. Zhang, E. Fernández-Fueyo, Y. Ni, M. van Schie, J. Gacs, R.
Renirie, R. Wever, F. G. Mutti, D. Rother, M. Alcalde, F. Hollmann, Nat.
Catal. 2018, 1, 55-62.
[
29]
NAD(P)H] on the cathode.
Numerous oxidoreductases in
nature catalyze redox reactions using NAD(P)H as a hydride
[23] B. O. Burek, S. R. de Boer, F. Tieves, W. Zhang, M. van Schie, S.
Bormann, M. Alcalde, D. Holtmann, F. Hollmann, D. W. Bahnemann, J.
Z. Bloh, ChemCatChem 2019, 11, 3093-3100.
[
30]
source. Overall, the proof of concept presented in this study
provides a design strategy for solar-assisted eBiorefinery that
can produce value-added chemicals on both electrodes
simultaneously.
[
24] Y. Miyase, S. Takasugi, S. Iguchi, Y. Miseki, T. Gunji, K. Sasaki, E.
Fujita, K. Sayama, Sustain. Energy Fuels 2018, 2, 1621-1629.
[
25] a) M. M. C. H. van Schie, W. Zhang, F. Tieves, D. S. Choi, C. B. Park,
B. O. Burek, J. Z. Bloh, I. W. C. E. Arends, C. E. Paul, M. Alcalde, F.
Hollmann, ACS Catal. 2019, 9, 7409-7417; b) J. Yoon, J. Kim, F.
Tieves, W. Zhang, M. Alcalde, F. Hollmann, C. B. Park, ACS Catal.
Acknowledgements
2
020, 10, 5236-5242.
This study was supported by the National Research Foundation
via the Creative Research Initiative Center (Grant number: NRF-
[
[
26] M. K. Peers, H. S. Toogood, D. J. Heyes, D. Mansell, B. J. Coe, N. S.
Scrutton, Catal. Sci. Technol. 2016, 6, 169-177.
2015R1A3A2066191), Republic of Korea.
27] S. K. Kuk, R. K. Singh, D. H. Nam, R. Singh, J.-K. Lee, C. B. Park,
Angew. Chem. Int. Ed. 2017, 56, 3827-3832.
Keywords: redox biocatalysis • eBiorefinery • photobiocatalysis
[28] a) Y. W. Lee, P. Boonmongkolras, E. J. Son, J. Kim, S. H. Lee, S. K.
Kuk, J. W. Ko, B. Shin, C. B. Park, Nat. Commun. 2018, 9, 4208; b) S.
K. Kuk, Y. Ham, K. Gopinath, P. Boonmongkolras, Y. Lee, Y. W. Lee, S.
Kondaveeti, C. Ahn, B. Shin, J.-K. Lee, S. Jeon, C. B. Park, Adv.
Energy Mater. 2019, 9, 1900029; c) D. S. Choi, H. Lee, F. Tieves, Y. W.
Lee, E. J. Son, W. Zhang, B. Shin, F. Hollmann, C. B. Park, ACS Catal.
•
photoelectrochemistry • photosynthesis
[
1]
a) S. H. Lee, D. S. Choi, S. K. Kuk, C. B. Park, Angew. Chem. Int. Ed.
2018, 57, 7958-7985; b) L. Schmermund, V. Jurkaš, F. F. Özgen, G. D.
Barone, H. C. Büchsenschütz, C. K. Winkler, S. Schmidt, R. Kourist, W.
Kroutil, ACS Catal. 2019, 9, 4115-4144.
2019, 9, 10562-10566; d) S. K. Kuk, J. Jang, J. Kim, Y. Lee, Y. S. Kim,
B. Koo, Y. W. Lee, J. W. Ko, B. Shin, J.-K. Lee, C. B. Park,
ChemSusChem 2020, DOI: 10.1002/cssc.20200045.
[2]
[3]
[4]
[5]
[6]
J. Kim, C. B. Park, Curr. Opin. Chem. Biol. 2019, 49, 122-129.
S. H. Lee, J. H. Kim, C. B. Park, Chem. Eur. J. 2013, 19, 4392-4406.
J. Li, N. Wu, Catal. Sci. Technol. 2015, 5, 1360-1384.
[
29] a) J. Kim, Y. W. Lee, E.-G. Choi, P. Boonmongkolras, B. W. Jeon, H.
Lee, S. T. Kim, S. K. Kuk, Y. H. Kim, B. Shin, C. B. Park, J. Mater.
Chem. A 2020, 8, 8496-8502; b) D. H. Nam, S. K. Kuk, H. Choe, S. Lee,
J. W. Ko, E. J. Son, E.-G. Choi, Y. H. Kim, C. B. Park, Green Chem.
H. S. Toogood, N. S. Scrutton, ACS Catal. 2018, 8, 3532-3549.
a) M. Mifsud, S. Gargiulo, S. Iborra, I. W. C. E. Arends, F. Hollmann, A.
Corma, Nat. Commun. 2014, 5, 3145; b) S. H. Lee, D. S. Choi, M.
Pesic, Y. W. Lee, C. E. Paul, F. Hollmann, C. B. Park, Angew. Chem.
Int. Ed. 2017, 56, 8681-8685; c) E. J. Son, S. H. Lee, S. K. Kuk, M.
Pesic, D. S. Choi, J. W. Ko, K. Kim, F. Hollmann, C. B. Park, Adv.
Funct. Mater. 2018, 28, 1705232.
2016, 18, 5989-5993; c) D. H. Nam, G. M. Ryu, S. K. Kuk, D. S. Choi, E.
J. Son, C. B. Park, Appl. Catal. B 2016, 198, 311-317; d) E. J. Son, J.
W. Ko, S. K. Kuk, H. Choe, S. Lee, J. H. Kim, D. H. Nam, G. M. Ryu, Y.
H. Kim, C. B. Park, Chem. Commun. 2016, 52, 9723-9726; e) W. S.
Choi, S. H. Lee, J. W. Ko, C. B. Park, ChemSusChem 2016, 9, 1559-
[
7]
a) K. Fuku, Y. Miyase, Y. Miseki, T. Gunji, K. Sayama, ChemistrySelect
1564.
2016, 1, 5721-5726; b) X. Shi, S. Siahrostami, G.-L. Li, Y. Zhang, P.
[
30] X. Wang, T. Saba, H. H. P. Yiu, R. F. Howe, J. A. Anderson, J. Shi,
Chakthranont, F. Studt, T. F. Jaramillo, X. Zheng, J. K. Nørskov, Nat.
Commun. 2017, 8, 701; c) J. H. Baek, T. M. Gill, H. Abroshan, S. Park,
X. Shi, J. Nørskov, H. S. Jung, S. Siahrostami, X. Zheng, ACS Energy
Lett. 2019, 4, 720-728.
Chem 2017, 2, 621-654.
[
[
8]
9]
D. Kang, T. W. Kim, S. R. Kubota, A. C. Cardiel, H. G. Cha, K.-S. Choi,
Chem. Rev. 2015, 115, 12839-12887.
J. K. Cooper, S. Gul, F. M. Toma, L. Chen, P.-A. Glans, J. Guo, J. W.
Ager, J. Yano, I. D. Sharp, Chem. Mater. 2014, 26, 5365-5373.
[
[
10] D. K. Lee, K.-S. Choi, Nat. Energy 2018, 3, 53-60.
11] J. Dong, E. Fernández-Fueyo, F. Hollmann, C. E. Paul, M. Pesic, S.
Schmidt, Y. Wang, S. Younes, W. Zhang, Angew. Chem. Int. Ed. 2018,
57, 9238-9261.
[
[
12] D. Mersch, C.-Y. Lee, J. Z. Zhang, K. Brinkert, J. C. Fontecilla-Camps,
A. W. Rutherford, E. Reisner, J. Am. Chem. Soc. 2015, 137, 8541-8549.
13] Y. Yoon, A. S. Hall, Y. Surendranath, Angew. Chem. Int. Ed. 2016, 55,
15282-15286.
4
This article is protected by copyright. All rights reserved.