In order to further compare the catalytic performances, two
maintained high enantioselectivity, which is beneficial for possible
industrial applications.
control experiments were also carried out using 5 and the 1 : 1
(
mole ratio) mixture of Ru-SBA-15 and (R,R)-DPEN as catalysts
We are grateful to the China National Natural Science
Foundation (No.20673072), Shanghai Sciences and Technologies
Development Fund (No.05JC14074) and Shanghai Leading
Academic Discipline Project (No.T0402) for financial support.
under similar reaction conditions. It was found that 5 afforded the
corresponding alcohol in 81.9% conversion and 59.1% ee, while the
1
: 1 (mole ratio) mixture of Ru-SBA-15 and (R,R)-DPEN gave
the corresponding alcohol in only 17.9% conversion and 79.3% ee
entries 7 and 8). As compared with catalyst 6, the low
(
Notes and references
enantioselective activity of 5 may be due to the fact that the
postmodified organic groups [(R,R)-DPEN] are mainly near the
1
(a) M. Heitbaum, F. Glorius and I. Escher, Angew. Chem., Int. Ed.,
2006, 45, 4732; (b) F. Fache, E. Schulz, M. L. Tommasino and
M. Lemaire, Chem. Rev., 2000, 100, 2159; (c) Principles and Practice of
Heterogeneous Catalysis, ed. J. M. Thomas and W. J. Thomas, Wiley-
VCH, Weinheim, 1997; (d) Chiral Catalyst Immobilization and
Recycling, ed. D. E. DeVos, I. F. J. Vankelecom and P. A. Jacobs,
Wiley-VCH, Weinheim, 2000; (e) Recoverable Catalysts and Reagents,
ed. J. A. Gladysz, Chem. Rev., 2002, 102, 3215.
11
pore mouth because of mass transfer, while distributing (R,R)-
DPEN ligand onto Ru-SBA-15 randomly might result in the jam
or disorder of nanopores. All these observations indicate that there
are difficulties in forming effective coordination to Ru due to the
Ru in the nanopores. A similar phenomenon is also observed by Li
6
et al.
2
(a) C. Saluzzo, R. ter Halle, F. Touchard, F. Fache, E. Schulz and
M. Lemaire, J. Organomet. Chem., 2000, 603, 30; (b) D. E. Bergbreiter,
Chem. Rev., 2002, 102, 3345; (c) S. Br a¨ se, F. Lauterwasser and
R. E. Ziegert, Adv. Synth. Catal., 2003, 345, 869; (d) Y. X. Liang,
Q. Jing, X. Li, L. Shi and K. L. Ding, J. Am. Chem. Soc., 2005, 127,
7694; (e) Q. H. Fan, Y. M. Li and A. S. C. Chan, Chem. Rev., 2002, 102,
3385; (f) P. Hesemann and J. J. E. Moreau, Tetrahedron: Asymmetry,
8
Therefore, when comparing catalyst 5 and Tu’s catalyst with
catalyst 6, the following two factors could be taken into
consideration. Firstly, the Ru loadings of catalyst 6 occur during
formation of the homogeneous catalysts that are anchored on
SBA-15 via covalent immobilization, while the Ru loadings of Tu’s
catalyst occur at the in situ complexing process and the presence of
some nonvalent adsorption is unavoidable. Hence catalyst 6 avoids
further loss of Ru after forming the mesoporous catalyst. ICP
analysis after the eighth recycling experiment process further
confirms the result that the loss of Ru could be neglected
2000, 11, 2183; (g) A. G. Hu, G. T. Yee and W. B. Lin, J. Am. Chem.
Soc., 2005, 127, 12486; (h) P. N. Liu, J. G. Deng, Y. Q. Tu and
S. H. Wang, Chem. Commun., 2004, 2070; (i) M. J. Alc o´ n, A. Corma,
M. Iglesias and F. S a´ nchez, J. Organomet. Chem., 2002, 655, 134.
3 (a) Y. Tao, H. Kanoh, L. Abrams and K. Kaneko, Chem. Rev., 2006,
06, 896; (b) P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka and
1
G. D. Stucky, Nature, 1998, 396, 152; (c) D. Zhao, J. Feng, Q. Huo,
N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky,
Science, 1998, 279, 548.
4 (a) D. W. Park, S. D. Choi, C. Y. Lee and G. J. Kim, Catal. Lett., 2002,
78, 145; (b) I. Dom ´ı nguez, V. Forn e´ s and M. J. Sabater, J. Catal., 2004,
(6.22 versus 6.26 mg per gram of catalyst). This also explains why
the catalytic activity of Tu’s catalyst decreases abruptly after three
recycling experiments, due to an amount of loss of Ru. Secondly,
because the homogeneous catalysts were immobilized on the
external surface of the support in catalyst 6, it is easy to form a
regularly dispersive arrangement of the catalytic species. This kind
of arrangement not only offers reasonable space for chiral
recognition of the substrate, but also restricts the aggregation or
disorder of the catalytic species, resulting in higher ee values. On
the contrary, the homogeneous catalysts were immobilized on the
228, 92; (c) B. F. G. Johnson, S. A. Raynor, D. S. Shepard,
T. Mashmeyer, J. M. Thomas, G. Sankar, S. Bromley, R. Oldroyd,
L. Gladden and M. D. Mantle, Chem. Commun., 1999, 1167; (d)
V. Y. Gusev, X. Feng, Z. Bu, G. L. Haller and J. A. O’Brien, J. Phys.
Chem., 1996, 100, 1985.
5
J. Y. Ying, C. P. Mehnert and M. S. Wong, Angew. Chem., Int. Ed.,
1999, 38, 56.
6 (a) D. M. Jiang, Q. H. Yang, J. Yang, L. Zhang, G. R. Zhu, W. G. Su
and C. Li, Chem. Mater., 2005, 17, 6154; (b) D. M. Jiang, J. S. Gao,
Q. H. Yang, J. Yang and C. Li, Chem. Mater., 2006, 18, 6012.
11
internal surface of the support in the catalyst 5. The jam or
disorder of the catalyst in the nanopores is a key factor to decrease
the enantioselectivity. An important feature of the design of
catalyst 6 is the easy and reliable separation via simple filtration.
For example, upon completion of the reaction, catalyst 6 was
quantitatively recovered via filtration. In eight consecutive
reactions, the catalyst afforded more than 99% conversions and
high ee values with a slight decrease in the eighth recycling
experiment (93.6%). This kind of phenomenon confirms the
advantages of Ru-loading prior to the formation of the
heterogeneous catalyst.
7
(a) A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya and R. Noyori,
J. Am. Chem. Soc., 1996, 118, 2521; (b) Y. C. Chen, T. F. Wu,
J. G. Deng, H. Liu, X. Cui, J. Zhu, Y. Z. Jiang, M. C. K. Choi and
A. S. C. Chan, J. Org. Chem., 2002, 67, 5301; (c) M. Watanabe,
K. Murata and T. Ikariya, J. Org. Chem., 2002, 67, 1712; (d)
C. A. Sandoval, T. Ohkuma, K. Mu n˜ iz and R. Noyori, J. Am. Chem.
Soc., 2003, 125, 13490–13503; (e) X. G. Li, W. P. Chen, W. Hems,
F. King and J. L. Xiao, Org. Lett., 2003, 5, 4559; (f) Q. Jing, X. Zhang,
J. Sun and K. Ding, Adv. Synth. Catal., 2005, 347, 1193; (g) Y. Q. Xia,
Y. Y. Tang, Z. M. Liang, C. B. Yu, X. G. Zhou, R. X. Li and X. J. Li,
J. Mol. Catal. A: Chem., 2005, 240, 132.
8
P. N. Liu, P. M. Gu, F. Wang and Y. Q. Tu, Org. Lett., 2004, 6, 169.
In conclusion, we report the facile preparation of a mesoporous
silica-supported chiral catalyst 6 by postgrafting, in which 6 was
obtained by anchoring 4 onto SBA-15 through refluxing in toluene
for 24 h. This kind of heterogeneous catalyst showed high catalytic
activities (more than 99% yields for all tested ketones) and excellent
enantioselectivities (more than 98% ee) for the asymmetric transfer
hydrogenation of various aromatic ketones. Besides, catalyst 6
could be readily recovered and reused in multiple consecutive
catalytic runs (up to 8 uses without unloading of Ru) with
9 (a) H. X. Li, F. Zhang, Y. Wan and Y. F. Lu, J. Phys. Chem. B, 2006,
10, 22942; (b) Y. Wan, F. Zhang, Y. F. Lu and H. X. Li, J. Mol. Catal.
1
A: Chem., 2007, 267, 165; (c) Y. Wan, J. Chen, D. Q. Zhang and
H. X. Li, J. Mol. Catal. A: Chem., 2006, 258, 89; (d) H. X. Li, Y. D. Wu,
Y. Wan, J. Zhang, W. L. Dai and M. H. Qiao, Catal. Today, 2004, 93–
95, 493; (e) H. X. Li, Q. F. Zhao, Y. Wan, W. L. Dai and M. H. Qiao,
J. Catal., 2006, 244, 251.
10 D. Zhao, Q. Huo, J. Feng, B. F. Chmelka and G. D. Stucky, J. Am.
Chem. Soc., 1998, 120, 6024.
1 (a) I. K. Mbaraka and B. H. Shanks, J. Catal., 2005, 229, 365; (b)
A. Stein and M. H. Lim, Chem. Mater., 1999, 11, 3285.
1
This journal is ß The Royal Society of Chemistry 2008
Chem. Commun., 2008, 347–349 | 349