Journal of Medicinal Chemistry
Article
(25) Eck, M. J.; Shoelson, S. E.; Harrison, S. C. Recognition of a
high-affinity phosphotyrosyl peptide by the Src homology-2 domain of
p56lck. Nature 1993, 362, 87−91.
(26) Burke, T. R., Jr.; Lee, K. Phosphotyrosyl mimetics in the
development of signal transduction inhibitors. Acc. Chem. Res. 2003,
36, 426−33.
SH2 domain of Grb7 and Grb2 using fluorescence polarization. J.
Biomol. Screening 2008, 13, 112−9.
(43) Ambaye, N. D.; Gunzburg, M. J.; Lim, R. C.; Price, J. T.; Wilce,
M. C.; Wilce, J. A. Benzopyrazine derivatives: A novel class of growth
factor receptor bound protein 7 antagonists. Bioorg. Med. Chem. 2011,
19, 693−701.
(44) Ambaye, N. D.; Gunzburg, M. J.; Lim, R. C.; Price, J. T.; Wilce,
M. C.; Wilce, J. A. The discovery of phenylbenzamide derivatives as
Grb7-based antitumor agents. ChemMedChem 2013, 8, 280−8.
(45) Morlacchi, P.; Robertson, F. M.; Klostergaard, J.; McMurray, J.
S. Targeting SH2 domains in breast cancer. Future Med. Chem. 2014,
6, 1909−26.
(27) Ambaye, N. D.; Gunzburg, M. J.; Traore, D. A. K.; Del Borgo,
M. P.; Perlmutter, P.; Wilce, M. C. J.; Wilce, J. A. Preparation of
crystals for characterizing the Grb7 SH2 domain before and after
complex formation with a bicyclic peptide antagonist. Acta Crystallogr.,
Sect. F: Struct. Biol. Commun. 2014, 70, 182−186.
(28) Stein, E. G.; Ghirlando, R.; Hubbard, S. R. Structural basis for
dimerization of the Grb10 Src homology 2 domain. Implications for
ligand specificity. J. Biol. Chem. 2003, 278, 13257−64.
(46) Pace, C. N.; Vajdos, F.; Fee, L.; Grimsley, G.; Gray, T. How to
measure and predict the molar absorption coefficient of a protein.
Protein Sci. 1995, 4, 2411−23.
(29) Depetris, R. S.; Hu, J.; Gimpelevich, I.; Holt, L. J.; Daly, R. J.;
Hubbard, S. R. Structural basis for inhibition of the insulin receptor by
the adaptor protein Grb14. Mol. Cell 2005, 20, 325−33.
(30) Porter, C. J.; Wilce, M. C.; Mackay, J. P.; Leedman, P.; Wilce, J.
A. Grb7-SH2 domain dimerisation is affected by a single point
mutation. Eur. Biophys. J. 2005, 34, 454−60.
(47) Leslie, A. W.; Powell, H. Processing Diffraction Data with
Mosflm. In Evolving Methods for Macromolecular Crystallography, Read,
R.; Sussman, J., Eds.; Springer: Dordrecht, 2007; Vol. 245, pp 41−51.
(48) Evans, P. Scaling and assessment of data quality. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2006, 62, 72−82.
(49) Winn, M. D.; Ballard, C. C.; Cowtan, K. D.; Dodson, E. J.;
Emsley, P.; Evans, P. R.; Keegan, R. M.; Krissinel, E. B.; Leslie, A. G.;
McCoy, A.; McNicholas, S. J.; Murshudov, G. N.; Pannu, N. S.;
Potterton, E. A.; Powell, H. R.; Read, R. J.; Vagin, A.; Wilson, K. S.
Overview of the CCP4 suite and current developments. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 2011, 67, 235−42.
(50) Vagin, A.; Teplyakov, A. Molecular replacement with MOLREP.
Acta Crystallogr., Sect. D: Biol. Crystallogr. 2010, 66, 22−5.
(51) Emsley, P.; Cowtan, K. Coot: model-building tools for
molecular graphics. Acta Crystallogr., Sect. D: Biol. Crystallogr. 2004,
60, 2126−32.
(52) Murshudov, G. N.; Vagin, A. A.; Dodson, E. J. Refinement of
macromolecular structures by the maximum-likelihood method. Acta
Crystallogr., Sect. D: Biol. Crystallogr. 1997, 53, 240−55.
(53) Afonine, P. V.; Grosse-Kunstleve, R. W.; Echols, N.; Headd, J. J.;
Moriarty, N. W.; Mustyakimov, M.; Terwilliger, T. C.; Urzhumtsev, A.;
Zwart, P. H.; Adams, P. D. Towards automated crystallographic
structure refinement with phenix.refine. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 2012, 68, 352−67.
(54) McPhillips, T. M.; McPhillips, S. E.; Chiu, H. J.; Cohen, A. E.;
Deacon, A. M.; Ellis, P. J.; Garman, E.; Gonzalez, A.; Sauter, N. K.;
Phizackerley, R. P.; Soltis, S. M.; Kuhn, P. Blu-Ice and the Distributed
Control System: software for data acquisition and instrument control
at macromolecular crystallography beamlines. J. Synchrotron Radiat.
2002, 9, 401−6.
(55) Winter, G. xia2: an expert system for macromolecular
crystallography data reduction. J. Appl. Crystallogr. 2010, 43, 186−190.
(56) McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M.
D.; Storoni, L. C.; Read, R. J. Phaser crystallographic software. J. Appl.
Crystallogr. 2007, 40, 658−674.
(31) Ambaye, N. D.; Pero, S. C.; Gunzburg, M. J.; Yap, M.; Clayton,
D. J.; Del Borgo, M. P.; Perlmutter, P.; Aguilar, M. I.; Shukla, G. S.;
Peletskaya, E.; Cookson, M. M.; Krag, D. N.; Wilce, M. C.; Wilce, J. A.
Structural basis of binding by cyclic nonphosphorylated peptide
antagonists of Grb7 implicated in breast cancer progression. J. Mol.
Biol. 2011, 412, 397−411.
(32) Waksman, G.; Shoelson, S. E.; Pant, N.; Cowburn, D.; Kuriyan,
J. Binding of a high affinity phosphotyrosyl peptide to the Src SH2
domain: crystal structures of the complexed and peptide-free forms.
Cell 1993, 72, 779−90.
(33) Burke, T. R., Jr.; Luo, J.; Yao, Z. J.; Gao, Y.; Zhao, H.; Milne, G.
W.; Guo, R.; Voigt, J. H.; King, C. R.; Yang, D. Monocarboxylic-based
phosphotyrosyl mimetics in the design of GRB2 SH2 domain
inhibitors. Bioorg. Med. Chem. Lett. 1999, 9, 347−52.
(34) Wang, W.; Ramdas, L.; Sun, G.; Ke, S.; Obeyesekere, N. U.;
Budde, R. J.; McMurray, J. S. Cyclic peptides incorporating 4-
carboxyphenylalanine and phosphotyrosine are potent inhibitors of
pp60(c-) (src). Biochemistry 2000, 39, 5221−8.
(35) Tilley, J. W.; Sarabu, R.; Wagner, R.; Mulkerins, K. Preparation
of carboalkoxyalkylphenylalanine derivatives from tyrosine. J. Org.
Chem. 1990, 55, 906−910.
(36) Janes, P. W.; Lackmann, M.; Church, W. B.; Sanderson, G. M.;
Sutherland, R. L.; Daly, R. J. Structural determinants of the interaction
between the erbB2 receptor and the Src homology 2 domain of Grb7.
J. Biol. Chem. 1997, 272, 8490−7.
(37) Bevington, A.; Mundy, K. I.; Yates, A. J.; Kanis, J. A.; Russell, R.
G.; Taylor, D. J.; Rajagopalan, B.; Radda, G. K. A study of intracellular
orthophosphate concentration in human muscle and erythrocytes by
31P nuclear magnetic resonance spectroscopy and selective chemical
assay. Clin. Sci. 1986, 71, 729−35.
(57) Moriarty, N. W.; Grosse-Kunstleve, R. W.; Adams, P. D.
electronic Ligand Builder and Optimization Workbench (eLBOW): a
tool for ligand coordinate and restraint generation. Acta Crystallogr.,
Sect. D: Biol. Crystallogr. 2009, 65, 1074−80.
(58) Chen, V. B.; Arendall, W. B., 3rd; Headd, J. J.; Keedy, D. A.;
Immormino, R. M.; Kapral, G. J.; Murray, L. W.; Richardson, J. S.;
Richardson, D. C. MolProbity: all-atom structure validation for
macromolecular crystallography. Acta Crystallogr., Sect. D: Biol.
Crystallogr. 2010, 66, 12−21.
(38) Gilmer, T.; Rodriguez, M.; Jordan, S.; Crosby, R.; Alligood, K.;
Green, M.; Kimery, M.; Wagner, C.; Kinder, D.; Charifson, P.; Hassell,
A. M.; Willard, D.; Luther, M.; Rusnak, D.; Sternbach, D. D.;
Mehrotra, M.; Peel, M.; Shampine, L.; Davis, R.; Robbins, J.; Patel, I.
R.; Kassel, D.; Burkhart, W.; Moyer, M.; Bradshaw, T.; Berman, J.
Peptide inhibitors of src SH3-SH2-phosphoprotein interactions. J. Biol.
Chem. 1994, 269, 31711−31719.
(39) Tong, L.; Warren, T. C.; Lukas, S.; Schembri-King, J.; Betageri,
R.; Proudfoot, J. R.; Jakes, S. Carboxymethyl-phenylalanine as a
replacement for phosphotyrosine in SH2 domain binding. J. Biol.
Chem. 1998, 273, 20238−42.
(40) Yao, Z. J.; King, C. R.; Cao, T.; Kelley, J.; Milne, G. W.; Voigt, J.
H.; Burke, T. R., Jr. Potent inhibition of Grb2 SH2 domain binding by
non-phosphate-containing ligands. J. Med. Chem. 1999, 42, 25−35.
(41) Bradshaw, J. M.; Mitaxov, V.; Waksman, G. Investigation of
phosphotyrosine recognition by the SH2 domain of the Src kinase. J.
Mol. Biol. 1999, 293, 971−85.
(42) Luzy, J. P.; Chen, H.; Gril, B.; Liu, W. Q.; Vidal, M.; Perdereau,
D.; Burnol, A. F.; Garbay, C. Development of binding assays for the
L
J. Med. Chem. XXXX, XXX, XXX−XXX