1946
J.-M. Brunel et al. / Tetrahedron: Asymmetry 9 (1998) 1941–1946
4. Oguni, N.; Matsuda, Y.; Kaneko, T. J. Am. Chem. Soc., 1988, 110, 7877.
5. Kitamura, M.; Okada, S.; Suga, S.; Noyori, R. J. Am. Chem. Soc., 1989, 111, 4028.
6. Terada, M.; Mikami, K.; Nakai, T. J. Chem. Soc., Chem. Commun., 1990, 1623.
7. Guillaneux, D.; Zhao, S. H.; Rainford, D.; Samuel, O.; Kagan, H. B. J. Am. Chem. Soc., 1994, 116, 9430.
8. Blackmond, D. G. J. Am. Chem. Soc., 1997, 119, 12934.
9. Kitamura, M.; Suga, S.; Niwa, M.; Noyori, R. J. Am. Chem. Soc., 1995, 117, 4832.
10. Zondervan, C.; Feringa, B. L. Tetrahedron: Asymmetry, 1996, 7, 1895.
11. Kobayashi, S.; Ishitani, H.; Araki, M.; Hachiya, I. Tetrahedron Lett., 1994, 35, 6325.
12. Pitchen, P.; Dunach, E.; Deshmukh, M. N.; Kagan, H. B. J. Am. Chem. Soc., 1984, 106, 8188.
13. Di Furia, F.; Modena, G.; Seraglia, R. Synthesis, 1984, 325.
14. Brunel, J. M.; Diter, P.; Duetsch, M.; Kagan, H. B. J. Org. Chem., 1995, 60, 8036.
15. Brunel, J. M.; Kagan, H. B. Synlett, 1996, 404.
16. Brunel, J. M.; Kagan, H. B. Bull. Soc. Chim. Fr., 1996, 133, 1109.
17. For a discussion on the various titanium species which may be generated from mixing Ti(O-iPr)4 and tartrates in several
relative amounts see, Berrisford, D. J.; Bolm, C.; Sharpless, K. B. Angew. Chem. Int. Ed. Engl., 1995, 34, 1059.
18. Diter, P.; Taudien, S.; Samuel, O.; Kagan, H. B. J. Org. Chem., 1994, 59, 370.
19. For a prediction of multi-shape NLE curves based on a simple kinetic model see Ref. 7. For a case of the NLE curve
crossing the straight line see, Tanaka, K.; Mitsui, J.; Kawabata, H.; Watanabe, A. J. Chem. Soc., Chem. Comm., 1991,
1632.
20. Sulfoxide 2 has 81% ee at 50% conversion and 90% ee at 90% conversion. A simple calculation indicates that the catalyst
must produce essentially enantiomerically pure sulfoxide beyond 50% conversion.
21. Asymmetric autoinduction (modification of the catalyst by the product) may be operating here (see, Alberts, A. H.;
Wynberg, H. J. Am. Chem. Soc., 1989, 111, 7265; Bolm, C.; Bienewald, H.; Seger, A. Angew. Chem. Int. Ed. Engl.,
1996, 35, 1657). However, addition of either enantiomer of 2 at the beginning of the reaction did not improve the
enantioselectivity.
22. We are currently investigating the various equilibria between monomeric and dimeric titanium complexes involved in the
asymmetric oxidation. The concentration effect on NLEs may be quantitatively correlated with the distribution of titanium
complexes. Ti(O-iPr)4 has been found to be devoid of catalytic activity in sulfoxidation and cannot be responsible for a
(−)-NLE.
23. We also studied NLEs in Ti catalyzed TMSCN addition on benzaldehyde (see, Hayashi, M.; Matsuda, T.; Oguni, N.
J. Chem. Soc., Perkin Trans 1, 1992, 3135) or in Sharpless epoxidation of PhCH2CH_CH–CH2OH catalyzed by Ti(O-
iPr)4/DET. In both cases an inversion of the sign of NLE with catalytic amount has been observed, as in sulfoxidation
(unpublished results).