Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
CsPbBr
3
PNC solution. Temperature-dependent PL spectra were 8 N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok,
Nature, 2015, 517, 476.
monitored by a CCD-based fiber optic spectrometer in air at
different temperatures, as shown in Fig. S10. CsPbBr PNC thin film
shows a continual decrease in PL intensity as the temperature
DOI: 10.1039/C6CC01500J
9
W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J.
Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. Wang and A. D.
3
Mohite, Science, 2015, 347, 522.
increases (see Fig. 5b), whereas the PL peak positions keep almost 10 W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok,
Science, 2015, 348, 1234.
unchanged, which is different from those of group II-VI QDs. For II-
1
1 Z. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler,
M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T.
Bein, H. J. Snaith and R. H. Friend, Nat. Nanotechnol., 2014, 9, 687.
VI QDs, the thermal quenching of the PL intensity and red-shifted
4
0,41
PL peak are commonly observed in the literature.
heating/cooling cycles, the PL intensity of CsPbBr
After three
3
PNC thin film 12 G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. Lim, R. H. Friend and N. C.
Greenham, Nano Lett., 2015, 15, 2640.
3 J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Adv. Mater., 2015,
DOI: 10.1002/adma.201502567.
4 N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P.
Boix, H. Demir and S. G. Mhaisalkar, J. Phys. Chem. Lett., 2015, 6, 4360.
15 O. Jaramillo-Quintero, R. Sanchez, M. Rincon and I. MoraSero, J. Phys.
Chem. Lett., 2015, 6, 1883.
shows a 24% decrease. To date, the chemical stability of PNCs is
still a big issue. Further research is necessary to find an effective
method to improve the stability of PNCs against moisture by
depositing an inorganic or organic water-repellent shell on the
surface of PNCs
1
1
2
1
1
0
5
0
5
0
1
6 L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H.
Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nano Lett. 2015,
15, 3692.
7 G. Nedelcu, L. Protesescu, S. Yakunin, M. Bodnarchuk, M. J. Grotevent
and M. V. Kovalenko, Nano Lett., 2015, 15, 5635.
8 Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A.
Petrozza, M. Prato and L. Manna, J. Am. Chem. Soc., 2015, 137, 10276.
9 A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury and
A. Nag, Angew. Chem. 2015, DOI: 10.1002/anie.201508276.
0 F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou
and Y. Dong, ACS Nano, 2015, 9, 4533.
1 L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S.
Agouram, G. Mínguez Espallargas, H. Bolink, R. Galian and J. Pérez-
Prieto, J. Am. Chem. Soc. 2014, 136, 850.
1.0
0.8
0.6
0.4
0.2
0.0
(
a)
(b)
heating
heating
heating
st
1
2
3
nd
rd
1
1
1
2
2
0
5
10
15
20
25
30
35
20
40
60
80
o
100
Time (days)
Temperature ( C)
Figure 5. (a) The PL stability test of oleic acid-capped CsPbBr
nanocrystal solution stored in ambient environment. (b) Temperature-
dependent PL intensity of CsPbBr nanocrystal thin film.
3
3
2
2 J. A. Sichert, Y. Tong, N. Mutz, M. Vollmer, S. Fischer, K. Z. Milowska,
R. Cortadella, B. Nickel, C. Cardenas-Daw, J. Stolarczyk, A. Urban and J.
Feldmann, Nano Lett., 2015, 15, 6521.
In summary, we report a room-temperature synthetic strategy for
preparing highly luminescent CsPbX (X=Cl, Br, I) perovskite
3
quantum dots. CsPbBr
3
PNCs were synthesized by a homogeneous 23 H. Huang, F. Zhao, L. Liu, F. Zhang, X. Wu, L. Shi, B. Zou, Q. Pei and H.
Zhong, ACS Appl. Mater. Interfaces, 2015, 7, 28128.
reaction in a variety of nonpolar organic solvents by using cesium (I)
and lead (II) fatty acid salts as well as quaternary ammonium
bromides as the precursors. All the experimental procedures are
conducted in the open air, and our approach can be readily extended
2
2
4 S. Bai, Z. Yuan and F. Gao, J. Mater. Chem. C, 2016, DOI:
0.1039/C5TC04116C.
1
5 R. Xie, U. Kolb, J. Li, T. Basché and A. Mews, J. Am. Chem. Soc., 2005,
127, 7480.
to a gram level. As-prepared CsPbX
3
(X=Cl, Br, I) perovskite 26 J. J. Li, Y. A. Wang, W. Guo, J. C. Keay, T. D. Mishima, M. B. Johnson
and X. Peng, J. Am. Chem. Soc., 2003, 125, 12567.
nanocrystals exhibit tunable photoluminescence in the range of 440
nm to 682 nm and high photoluminescence quantum yields of 50-
5%. These high quality CsPbX (X=Cl, Br, I) perovskite
3
2
2
7 D. Pan, Q. Wang, S. Jiang, X. Ji and L. An, Adv. Mater., 2005, 17, 176.
8 X. Zhong, M. Han, Z. Dong, T. J. White and W. Knoll, J. Am. Chem. Soc.,
8
2
003, 125, 8589.
nanocrystals could have a high potential as an emitter in light- 29 W. Nan, Y. Niu, H. Qin, F. Cui, Y. Yang, R. Lai, W. Lin and X. Peng, J.
Am. Chem. Soc., 2012, 134, 19685.
0 C. G. Wu, C. Chiang, Z. Tseng, M. Nazeeruddin, A. Hagfeldt and M.
Gratzel, Energy Environ. Sci., 2015, 8, 2725.
1 C. Chiang, Z. L. Tseng and C. G. Wu, J. Mater. Chem. A, 2014, 2, 15897.
2 S. Sun, D. Yuan, Y. Xu, A. Wang and Z. Deng, ACS Nano, 2016, 10 ,
emitting diodes.
3
Acknowledgement
3
3
This work was supported by National Natural Science Foundation of
China (Grant No. 91333108; 51302258; 51172229; 51202241).
3
648.
3
3
3
3 X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, Adv. Funct.
Mater., 2016, DOI: 10.1002/adfm.201600109.
4 X. Wang, L. Qu, J. Zhang, X. Peng and M. Xiao, Nano Lett., 2003, 3,
Notes and references
1
103.
5 D. Pan, Q. Wang, J. Pang, S. Jiang, X. Ji and L. An, Chem. Mater., 2006,
8, 4253.
1
2
3
A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc.,
2
009, 131, 6050.
1
M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith,
Science, 2012, 338, 643.
3
3
3
6 W. Zhang and X. Zhong, Inorg. Chem., 2011, 50, 4065.
7 Y. Chen, S. Li, L. Huang and D. Pan, Nanoscale, 2014, 6, 1295.
8 T. Leijtens, G. E. Eperon, N. K. Noel, S. Habisreutinger, A. Petrozza and
H. J. Snaith, Adv. Energy Mater. 2015, 5, DOI:10.1002/aenm.201500963.
9 G. E. Eperon, S. N. Habisreutinger, T. Leijtens, B. J. Bruijnaers, J. J. Van
Franeker, D. W. deQuilettes, S. Pathak, R. Sutton, G. Grancini, D. Ginger,
R. Janssen, A. Petrozza and H. J. Snaith, ACS Nano, 2015, 9, 9380.
0 Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. Donegá, A. Meijerink,
ACS Nano, 2012, 6, 9058.
J. Burschka, N. Pellet, S. J. Moon, R. Humphry-Baker, P. Gao, M. K.
Nazeeruddin and M. Grätzel, Nature, 2013, 499, 316.
M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395.
G. Xing, N. Mathews, S. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S.
Mhaisalkar, T. C. Sum, Science, 2013, 342, 344.
4
5
3
6
7
H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You,
Y. Liu and Y. Yang, Science, 2014, 345, 542.
A. Mei, X. Li, L. Liu, Z. Ku, T. Liu, Y. Rong, M. Xu, M. Hu, J. Chen, Y.
Yang, M. Grätzel and H. Han, Science, 2014, 345, 295.
4
4
1 G. W. Walker, V. C. Sundar, C. M. Rudzinski, A. W. Wun, M. G.
Bawendi and D. G. Nocera, Appl. Phys. Lett., 2003, 83, 3555.
4
| J. Name., 2012, 00, 1‐3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins