10.1002/ejic.201700565
European Journal of Inorganic Chemistry
FULL PAPER
Commun. 1995, 20, 1799–1800.
filter, before purification via a sephadex column (sephadex LH-20). The
first red fraction was collected, the solvent removed and the red solid
dried under high vacuum to obtain 7 in 57 % (14.8 mg,10.1 µmol) yield.
1H NMR (400 MHz, CD2Cl2, c = 2.95∙10-4 M): δ = 9.73 (d, J = 8.0 Hz, 2H,
c-H), 9.41 (d, J = 7.9 Hz, 2H, d-H), 8.96 (d, J = 8.0 Hz, 2H, f-H), 8.60 (d,
J = 4.0 Hz, 2H, i-H), 8.55 (d, J = 1.7 Hz, 2H, 3-H), 8.49 (t, J = 4.6 Hz, 4H,
3´,e-H), 8.41 (dd, J = 5.4, 0.9 Hz, 2H,a-H), 8.29 (dd, J = 8.1, 5.1 Hz, 2H,
b-H), 8.06 (td, J = 8.0, 1.3 Hz, 2H, g-H), 8.01 (d, J = 6.5 Hz, 2H, 6-H),
7.92 (d, J = 5.9 Hz, 2H, 6´-H), 7.63 (dd, J = 5.9, 2.1 Hz, 2H, 5´-H), 7.47
(ddd, J = 12.2, 6.1, 2.6 Hz, 4H, 5,h-H), 1.54 (s, 18H, tBu), 1.38 (s, 18H,
tBu´) ppm. 13C NMR (101 MHz, CD2Cl2, c = 3.99∙10-3 M): δ = 163.44,
163.41, 158.03, 157.39, 157.28, 155.08, 153.92, 151.84, 151.68, 149.91,
149.38, 147.28, 140.94, 138.83, 137.54, 133.96, 130.27, 128.29, 126.20,
126.18, 126.08, 125.21, 122.27, 121.50, 121.41, 121.16, 120.74 ppm.
HRMS/ESI (+): calcd. for C70H66N12Ru 588.2292, found 588.2292
[8]
[9]
M. G. Pfeffer, T. Kowacs, M. Wächtler, J. Guthmuller, B. Dietzek, J. G.
Vos, S. Rau, Angew. Chem., Int. Ed. 2015, 6627–6631.
A. K. Mengele, S. Kaufhold, C. Streb, S. Rau, Dalton Trans. 2016, 45,
6612–6618.
[10] S. Tschierlei, M. Presselt, C. Kuhnt, A. Yartsev, T. Pascher, V.
Sundström, M. Karnahl, M. Schwalbe, B. Schäfer, S. Rau, M. Schmitt,
B. Dietzek, J. Popp, Chem. Eur. J. 2009, 15, 7678–7688.
[11] C. Chiorboli, M. T. Indelli, F. Scandola, Top. Curr. Chem. 2005, 257,
63–102.
[12] C. Chiorboli, C. A. Bignozzi, F. Scandola, E. Ishow, A. Gourdon, J.-P.
Launay, Inorg. Chem. 1999, 38, 2402–2410.
[13] C. Chiorboli, M. A. J. Rodgers, F. Scandola, J. Am. Chem. Soc. 2003,
125, 483–491.
[14] M. G. Pfeffer, L. Zedler, S. Kupfer, M. Paul, M. Schwalbe, K. Peuntinger,
D. M. Guldi, J. Guthmuller, J. Popp, S. Gräfe, B. Dietzek, S. Rau,
Dalton Trans. 2014, 43, 11676–11686.
[M-2PF6]2+, 392.4883 [M-2PF6+H]3+
.
[15] K. Ritter, C. Pehlken, D. Sorsche, S. Rau, Dalton Trans. 2015, 44,
8889–8905.
ZnII adduct (7 + ZnII). In a 100 mL flask 7 (15.1 mg, 10 µmol) was
dissolved in a minimal amount of MeCN, to this solution a concentrated
Zn(BF4)2 (24.3 mg, 0.1 mmol) solution in MeCN was added. The resulting
mixture was stirred for 4 h at RT. During the course of these 4 h a white
precipitate formed, which was filtered off. The remaining red solution was
concentrated and the ZnII adduct could be obtained via fractional
crystallization by diffusing diethyl ether into the solution. The resulting red
solid was filtered off and washed with diethyl ether, yielding 63 %
(10.7 mg, 6.3 µmol). 1H NMR (400 MHz, CD3CN): δ = 10.27 (d,
J = 8.6 Hz, 2H, d-H), 10.03 (dd, J = 8.3, 1.3 Hz, 2H, c-H), 9.26 (d,
J = 4.3 Hz, 2H, i-H), 9.14 (d, J = 8.7 Hz, 2H, e-H), 8.81 (d, J = 8.0 Hz, 2H,
f-H), 8.56 (d, J = 1.8 Hz, 2H, 3-H), 8.52 (d, J = 1.8 Hz, 2H, 3´-H), 8.42 (td,
J = 7.9, 1.5 Hz, 2H, g-H), 8.29 (dd, J = 5.4, 1.3 Hz, 2H, a-H), 8.06 (dd,
J = 8.2, 5.3 Hz, 2H, b-H), 7.99 (ddd, J = 7.7, 5.2, 0.9 Hz, 2H, h-H), 7.73
(d, J = 5.9 Hz, 2H, 6-H), 7.63 (d, J = 6.2 Hz, 2H, 6´-H), 7.51 (dd, J = 6.0,
2.0 Hz, 2H, 5-H), 7.25 (dd, J = 6.1, 2.0 Hz, 2H, 5´-H), 1.47 (s, 18H, tBu),
1.36 (s, 18H, tBu´) ppm.
[16] M. Karnahl, S. Tschierlei, C. Kuhnt, B. Dietzek, M. Schmitt, J. Popp, M.
Schwalbe, S. Krieck, H. Görls, F. W. Heinemann, S. Rau, Dalton Trans.
2010, 39, 2359–70.
[17] M. Karnahl, C. Kuhnt, F. Ma, A. Yartsev, M. Schmitt, B. Dietzek, S. Rau,
J. Popp, ChemPhysChem 2011, 12, 2101–2109.
[18] N. Komatsuzaki, R. Katoh, Y. Himeda, H. Sugihara, H. Arakawa, K.
Kasuga, J. Chem. Soc. Dalton Trans 2000, 3053–3054.
[19] Y. Liu, S. M. Ng, S. M. Yiu, W. W. Y. Lam, X. G. Wei, K. C. Lau, T. C.
Lau, Angew. Chem., Int. Ed. 2014, 53, 14468–14471.
[20] C.-F. Leung, S.-M. Ng, C.-C. Ko, W.-L. Man, J. Wu, L. Chen, T.-C. Lau,
Energy Environ. Sci. 2012, 5, 7903.
[21] Z. Guo, S. Cheng, C. Cometto, E. Anxolabéhere-Mallart, S. M. Ng, C. C.
Ko, G. Liu, L. Chen, M. Robert, T. C. Lau, J. Am. Chem. Soc. 2016, 138,
9413–9416.
[22] K. Lam, K.-Y. Wong, S.-M. Yang, C.-M. Che, J. Chem. Soc. Dalt. Trans.
1995, 1103–1107.
[23] R. Zong, R. P. Thummel, J. Am. Chem. Soc. 2004, 126, 10800–10801.
[24] G. Zhang, R. Zong, H. W. Tseng, R. P. Thummel, Inorg. Chem. 2008,
47, 990–998.
[25] R. Zong, B. Wang, R. P. Thummel, Inorg. Chem. 2012, 51, 3179–3185.
[26] Z.-J. Xin, S. Liu, C.-B. Li, Y.-J. Lei, D.-X. Xue, X.-W. Gao, H.-Y. Wang,
Int. J. Hydrogen Energy 2016, 1–6.
Acknowledgements
[27] J. Frey, T. Kraus, V. Heitz, J. P. Sauvage, Chem. Eur. J. 2007, 13,
7584–7594.
[28] C. Braun, E. Spuling, N. B. Heine, M. Cakici, M. Nieger, S. Bräse, Adv.
Synth. Catal. 2016, 358, 1664–1670.
A. M. gratefully acknowledges financial support by
Chemiefonds-Stipendium of Fonds der Chemischen Industrie.
a
[29] E. Ishow, A. Gourdon, J.-P. Launay, C. Chiorboli, F. Scandola, Inorg.
Chem. 1999, 38, 1504–1510.
Keywords: ruthenium • tetradentate ligands • pi interactions •
electrochemistry • photophysics
[30] A. N. Carolan, G. M. Cockrell, N. J. Williams, G. Zhang, D. G.
Vanderveer, H. Lee, R. P. Thummel, R. D. Hancock, Inorg. Chem. 2013,
52, 15–27.
[31] E. C. Constable, S. M. Elder, M. J. Hannon, A. Martin, P. R. Raithby, D.
A. Tocher, Dalton Trans. 1996, 2423–2433.
[1]
[2]
[3]
[4]
B. Gholamkhass, H. Mametsuka, K. Koike, T. Tanabe, M. Furue, O.
Ishitani, Inorg. Chem. 2005, 44, 2326–2336.
[32] M. G. Pfeffer, C. Pehlken, R. Staehle, D. Sorsche, C. Streb, S. Rau,
Dalton Trans. 2014, 43, 13307.
H. Ozawa, M. Haga, K. Sakai, J. Am. Chem. Soc. 2006, 128, 4926–
4927.
[33] J. Habermehl, D. Sorsche, P. Murszat, S. Rau, Eur. J. Inorg. Chem.
2016, 3423–3428.
T. A. White, S. L. H. Higgins, S. M. Arachchige, K. J. Brewer, Angew.
Chem., Int. Ed. 2011, 50, 12209–12213.
[34] M. B. Majewski, N. R. De Tacconi, F. M. MacDonnell, M. O. Wolf, Chem.
Eur. J. 2013, 19, 8331–8341.
S. Rau, B. Schäfer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H.
Görls, W. Henry, J. G. Vos, Angew. Chem., Int. Ed. 2006, 45, 6215–
6218.
[35] A. E. Friedman, J.-C. Chambron, J.-P. Sauvage, N. J. Turro, J. K.
Barton, J. Am. Chem. Soc. 1990, 112, 4960–4962.
[5]
[6]
[7]
C. Matlachowski, B. Braun, S. Tschierlei, M. Schwalbe, Inorg. Chem.
2015, 54, 10351–10360.
[36] Y. Liu, A. Chouai, N. N. Degtyareva, D. A. Lutterman, K. R. Dunbar, C.
Turro, J. Am. Chem. Soc. 2005, 127, 10796–10797.
J. Bolger, A. Gourdon, E. Ishow, J.-P. Launay, Inorg. Chem. 1996, 35,
2937–2944.
[37] L. Petermann, R. Staehle, M. Pfeifer, C. Reichardt, D. Sorsche, M.
Wächtler, J. Popp, B. Dietzek, S. Rau, Chem. Eur. J. 2016, 8240–8253.
[38] R. F. Jones, D. J. Cole-Hamilton, Inorg. Chem. 1981, 53, L3–L5.
J. Bolger, A. Gourdon, E. Ishow, J.-P. Launay, J. Chem. Soc. Chem.
This article is protected by copyright. All rights reserved.