Fleming et al.
quency.11 This coordination promiscuity is encapsulated
in the thermally induced interconversion of the N- and
C-phenylsulfonylacetonitriles 3 and 4 (Figure 1).12
Extensive NMR analyses of the metalated nitriles
identify the predominant solution structures as being
propargyl bromide causes exclusive S
2 displacement,
N
whereas conversion to the C-metalated nitrile 11 and
N
alkylation with propargyl bromide gives the S 2′ alle-
nylnitrile 12 exclusively (Scheme 1).21 Related regiodi-
vergent alkylations in polar and nonpolar solvents may
result from analogous preferential formation of N- or
13
essentially identical to those observed in the solid state.
6
15
22
Li- N NMR coupling confirms the preference for the
C-metalated nitriles.
N-lithiated dimer 1 in ether-toluene solvent mixtures,14
whereas the transition-metal-containing nitriles 3 and
SCHEME 1. Divergent Alkylations of N- and
C-Metalated Nitriles
13
4
exhibit solution- C chemical shifts for the nitrile
carbon, indicative of the corresponding N- and C-meta-
15
lated nitriles (δ ) 140-155 and 110-125, respectively).
Diagnostic C NMR shifts for the nitrile carbons of 5
1
3
16
1
7
and 6, which are only slightly shifted from those of the
parent neutral nitriles similarly suggest C-metalated
nitrile solution structures (Figure 2). Resident within this
continuum of N- and C-metalated nitriles is the com-
plexed lithioacetonitrile (7), which exists as a rapidly
equilibrating mixture of N- and C-coordinated nitriles in
ether at -100 °C.18
Even more intriguing are stereodivergent alkylations
of N- and C-metalated nitriles that are subtly inferred
from stereoselectivity trends in cyclopropanecarbonitrile
deuterations,23 solvent-selective cyclizations to cis- and
24
trans-decalins, and alkylations of cylohexanecarboni-
4
triles. The modest selectivity for the deprotonation-
methylation of the conformationally locked nitrile 13 and
the completely stereoselective methylation of the corre-
sponding magnesiated nitrile similarly imply selective
formation of N- and C-metalated nitrile intermediates
(
Scheme 2).25 The potential for complementary stereose-
FIGURE 2. Solution structures of metalated nitriles.
lectivities in alkylations of N- and C-metalated nitriles
stimulated a comprehensive series of alkylations. Alky-
Several intriguing alkylations with metalated nitriles
imply that the metal coordination site profoundly influ-
(
12) For an analogous interconversion of palladium complexes see:
19
ences the reactivity of metalated nitriles. For example,
Kujime, M.; Hikichi, S.; Akita, M. Organometallics 2001, 20, 4049.
(13) Abbotto, A.; Bradamante, S.; Pagani, G. A. J. Org. Chem. 1993,
intercepting the putative1
4,20
N-lithiated nitrile 9 with
5
8, 449.
(
1994, 116, 11602.
(15) Naota, T.; Tannna, A.; Murahashi, S.-I. Chem. Commun. 2001,
63.
14) Carlier, P. R.; Lucht, B. L.; Collum, D. B. J. Am. Chem. Soc.
(
11) For C-metalated nitriles see: (a) Naota, T.; Tannna, A.;
Kamuro, S.; Murahashi, S.-I. J. Am. Chem. Soc. 2002, 124, 6842. (b)
Naota, T.; Tannna, A.; Murahashi, S.-I. J. Am. Chem. Soc. 2000, 122,
2
960. (c) Alburquerque, P. R.; Pinhas, A. R.; Krause Bauer, J. A. Inorg.
(16) (a) Thibonnet, J.; Vu, V. A.; Berillon, L.; Knochel, P. Tetrahe-
dron, 2002, 58, 4787. (b) Thibonnet, J.; Knochel, P. Tetrahedron Lett.,
2000, 41, 3319.
(17) (a) Orsini, F. Synthesis 1985, 500. See also (b) Goasdoue, N.;
Gaudemar, M. J. Organomet. Chem. 1972, 39, 17.
(18) Sott, R.; Granander, J.; Hilmersson, G. J. Am. Chem. Soc. 2004,
126, 6798.
(19) (a) Fleming, F. F.; Zhang, Z.; Wei, G.; Steward, O. W. Org. Lett.
2005, 7, 447. (b) Caron, S.; Vazquez, E.; Wojcik, J. M. J. Am. Chem.
Soc. 2000, 122, 712. (c) Wu, Y.-D.; Houk, K. N.; Florez, J.; Trost, B. M.
J. Org. Chem. 1991, 56, 3656. (d) Leung, C.-S.; Rowlands, M. G.;
Jarman, M.; Foster, A. B.; Griggs, L. J.; Wilman, D. E. V. J. Med. Chem.
1987, 30, 1550. (e) Trost, B. M.; Florez, J.; Jebaratnam, D. J. J. Am.
Chem. Soc. 1987, 109, 613.
(20) Carlier, P. R.; Lo, C. W.-S. J. Am. Chem. Soc. 2000, 122, 12819.
(21) Fleming, F. F.; Zhang, Z.; Liu, W.; Knochel, P. J. Org. Chem.
2005, 70, 2200.
Chim. Acta 2000, 298, 239. (d) Ruiz, J.; Rodr ´ı guez, V.; L o´ pez, G.;
Casab o´ , J.; Molins, E.; Miravitlles, C. Organometallics 1999, 18, 1177.
(
1
e) Ragaini, F.; Porta, F.; Fumagalli, A.; Demartin, F. Organometallics
991, 10, 3785. (f) Porta, F.; Ragaini, F.; Cenini, S.; Demartin, F.
Organometallics 1990, 9, 929. (g) Ko, J. J.; Bockman, T. M.; Kochi, J.
K. Organometallics 1990, 9, 1833. (h) Cowan, R. L.; Trogler, W. J. Am.
Chem. Soc. 1989, 111, 4750. (i) Del Pra, A.; Forsellini, E.; Bombieri,
G.; Michelin, R. A.; Ros, R. J. Chem. Soc., Dalton Trans. 1979, 1862.
(
j) Lenarda, M.; Pahor, N. B.; Calligaris, M.; Graziani, M.; Randaccio,
L. J. Chem. Soc., Chem. Commun. 1978, 279. (k) Schlodder, R.; Ibers,
J. A.; Lenarda, M.; Graziani, M. J. Am. Chem. Soc. 1974, 96, 6893. (l)
Yarrow, D. J.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Organomet.
Chem. 1974, 70, 133. For N-metalated nitriles see: (a) Tanabe, Y.;
Seino, H.; Ishii, Y.; Hidai, M. J. Am. Chem. Soc. 2000, 122, 1690. (b)
Murahashi, S.-I.; Take, K.; Naota, T.; Takaya, H. Synlett 2000, 1016-
1
018. (c) Triki, S.; Pala, J. S.; Decoster, M.; Molini e´ , P.; Toupet, L.
Angew. Chem., Int. Ed. 1999, 38, 113. (d) Hirano, M.; Takenaka, A.;
Mizuho, Y.; Hiraoka, M.; Komiya, S. J. Chem. Soc., Dalton Trans. 1999,
(22) (a) Sommer, M. B.; Begtrup, M.; Bøgesø, K. P. J. Org. Chem.
1990, 55, 4817. (b) For computed structural differences in the extent
of C- and N-coordination for lithiated, sodiated, and magnesiated
acetonitrile see: Kaneti, J.; Schleyer, P. V. R.; Clark, T.; Kos, A. J.;
Spitznagel, G. W.; Andrade, J. G.; Moffat, J. B. J. Am. Chem. Soc. 1986,
108, 1481.
3
209. (e) Yates, M. L.; Arif, A. M.; Manson, J. L.; Kalm, B. A.; Burkhart,
B. M.; Miller, J. S. Inorg. Chem. 1998, 37, 840. (f) J a¨ ger, L.; Tretner,
C.; Hartung, H.; Biedermann, M. Chem. Ber. 1997, 130, 1007. (g) Zhao,
H.; Heintz, R. A.; Dunbar, K. R. J. Am. Chem. Soc. 1996, 118, 12844.
(
h) Murahashi, S.-I.; Naota, T.; Taki, H.; Mizuno, M.; Takaya, H.;
(23) Walborsky, H. M.; Motes, J. M. J. Am. Chem. Soc. 1970, 92,
2445.
Komiya, S.; Mizuho, Y.; Oyasato, N.; Hiraoka, M.; Hirano, M.;
Fukuoka, A. J. Am. Chem. Soc. 1995, 117, 12436. (i) Hirano, M.; Ito,
Y.; Hirai, M.; Fukuoka, A.; Komiya, S. Chem. Lett. 1993, 2057. (j)
Mizuho, Y.; Kasuga, N.; Komiya, S. Chem. Lett. 1991, 2127. (k)
Schlodder, R.; Ibers, J. A. Inorg. Chem. Soc. 1974, 13, 2870. (l) Ricci,
J. S.; Ibers, J. A. J. Am. Chem. Soc. 1971, 93, 2391.
(24) Fleming, F. F.; Shook, B. C. J. Org. Chem. 2002, 67, 2885. See
also: Trost, B. M.; Florez, J.; Jebaratnam, D. J. J. Am. Chem. Soc.
1987, 109, 613.
(25) For a preliminary communication see: Fleming, F. F.; Zhang,
Z.; Knochel, P. Org. Lett. 2004, 6, 501.
3846 J. Org. Chem., Vol. 70, No. 10, 2005