2674
J. Am. Chem. Soc. 2001, 123, 2674-2676
Scheme 1
Mechanism of Nitric Oxide Synthase. Evidence that
Direct Hydrogen Atom Abstraction from the O-H
Bond of NG-Hydroxyarginine Is Not Relevant to the
Mechanism
Hui Huang, Jung-Mi Hah, and Richard B. Silverman*
Department of Chemistry and Department of
Biochemistry, Molecular Biology, and Cell Biology
Northwestern UniVersity, EVanston, Illinois 60208-3113
Scheme 2
ReceiVed December 19, 2000
Mammalian nitric oxide synthases (NOS, E.C. 1.14.13.39)
comprise a family of enzymes that catalyzes the conversion of
L-arginine (1) to L-citrulline (3) and the second messenger
molecule nitric oxide (4, Scheme 1).1 There are two constitutive
isozymes of NOS, neuronal nitric oxide synthase (nNOS), which
is believed to generate NO in the brain2 and is involved in
neurotransmission and long-term potentiation,3 and endothelial
nitric oxide synthase (eNOS), which is important as it is involved
in the regulation of smooth muscle relaxation and vascular tone.4
A third, inducible, isoform in macrophage (iNOS) is important
in the immune system defense against microorganisms and tumor
cells.5
Scheme 3
NOS is a complex enzyme that requires five cofactors for
activity. The N-terminus is the oxygenase domain, to which heme,
tetrahydrobiopterin, and the substrate bind. The C-terminus
reductase domain binds molecules of FMN, FAD, and NADPH;
the two domains are connected by a calmodulin-binding domain.6
The active form of the enzyme exists as a homodimer in which
the interaction occurs primarily between two oxygenase domains,7
but forms an extended dimer interface.8
The mechanism of action of this family of enzymes is not yet
clear, although it is known that the reaction proceeds from
L-arginine to L-NG-hydroxyarginine (2) and then to L-citrulline
and NO.9 Nω-Hydroxy-L-arginine was shown to be a kinetically
competent substrate for macrophage NO synthase that gives
stoichiometric amounts of L-citrulline and NO.10 [15N]N-Hydroxy-
L-arginine gives 15NO, indicating that the hydroxylamine nitrogen
becomes the N in NO.10b The first half-reaction consumes two
electrons from NADPH and incorporates one atom of oxygen from
molecular oxygen to give 2. The second half-reaction oxidizes
2, with the consumption of half an equivalent of NADPH and a
molecule of molecular oxygen to give the final products. The
simplest way to rationalize the conversion of 1 to 2 is via a
standard heme-dependent hydroxylation mechanism; however,
there is evidence that the tetrahydrobiopterin also may be involved
in the electron-transfer process of this reaction.11 The second half-
reaction presents an even greater challenge to the mechanistic
enzymologist, having no direct analogy in other systems. Con-
sequently, a variety of mechanistic possibilities have been
proposed over the years for this step. The early proposals, that 2
undergoes hydrolysis to 3 and NO,12 cannot be correct because
the oxygen atom in 3 was shown to come from O2, not from
H2O.
Schemes 2-8 show some of the different mechanistic pos-
sibilities previously proposed for the conversion of 2 to 3 and 4
which use molecular oxygen as the oxygen source for both half
reactions. The principal difference in these mechanisms involves
the order of bond cleavage. In all cases the O-H bond of 2 must
be cleaved, but in Schemes 2,13 3,14 4,15 5,16 and 617 the O-H
(1) (a) Griffith, O. W.; Stuehr, D. J. Annu. ReV. Physiol. 1995, 57, 707-
736. (b) Kerwin, J. F. J.; Lancaster, J. R. J.; Feldman, P. L. J. Med. Chem.
1995, 38, 4342-4362.
(2) Schmidt, H. H. H. W.; Murad, F. Biochem. Biophys. Res. Commun.
1991, 181, 1372-1377.
(3) Schmidt, H. H. H. W.; Walter, U. Cell 1994, 78, 919-925.
(4) (a) Fo¨rstermann, U.; Pollock, J. S.; Schmidt, H. H. H. W.; Heller, M.;
Murad, F. Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 1788-1792. (b) Palmer, R.
M. J.; Ferrige, A. G.; Moncada, S. Nature 1987, 327, 524-526.
(5) MacMicking, J.; Xie, Q. W.; Nathan, C. Annu. ReV. Immunol. 1997,
15, 323-350.
(6) (a) Mayer, B.; Hemmens, B. Trends Biochem. Sci. 1997, 22, 477-
481. (b) Masters, B. S. S.; McMillan, K.; Sheta, E. A.; Nishimura, J. S.; Roman,
L. J.; Martasek, P. FASEB J. 1996, 10, 552-558.
(7) Stuehr, D. J. Annu. ReV. Pharmacol. Toxicol. 1997, 37, 339-359.
(8) (a) Li, H.; Raman, C. S.; Glaser, C. B.; Blasko, E.; Young, T. A.;
Parkinson, J. F.; Whitlow, M.; Poulos, T. L. J. Biol. Chem. 1999, 274, 21276-
21284. (b) Fischmann, T. O.; Hruza, A.; Niu, X. D.; Fossetta, J. D.; Lunn, C.
A.; Dolphin, E.; Prongay, A. J.; Reichert, P.; Lundell, D. J.; Narula, S. K.;
Weber, P. C. Nat. Struct. Biol. 1999, 5, 602-611. (c) Crane, B. R.; Arvai, A.
S.; Ghosh, D. K.; Wu, C.; Getzoff, E. D.; Stuehr, D. J.; Tainer, J. A. Science
1998, 279, 2121-2126.
(9) Marletta, M. A.; Hurshman, A. R.; Rusche, K. M. Curr. Opin. Chem.
Biol. 1998, 2, 656-663.
(10) (a) Stuehr, D. J.; Kwon, N. S.; Nathan, C. F.; Griffith, O. W.; Feldman,
P. L.; Wiseman, J. J. Biol. Chem. 1991, 266, 6259-63. (b) Pufahl, R. A.;
Nanjappan, P. G.; Woodard, R. W.; Marletta, M. A Biochemistry 1992, 31,
6822-8.
(11) (a) Hurshman, A R.; Krebs, C.; Edmondson, D. E.; Huynh, B. H.;
Marletta, M. A. Biochemistry 1999, 38, 15689-15696. (b) Gorren, A. C. F.;
Bec, N.; Schrammel, A.; Werner, E. R.; Lange, R.; Mayer, B. Biochemistry
2000, 39, 11763-70. (c) Raman, C. S.; Li, H.; Martasek, P.; Kral, V.; Masters,
B. S.; Poulos, T. L. Cell 1998, 95, 939-950.
(12) (a) Marletta, M. A.; Yoon, P. S.; Iyengar, R.; Leaf, C. D.; Wishnok,
J. S. Biochemistry 1988, 27, 8706-11. (b) Tayeh, M. A.; Marletta, M. A. J.
Biol. Chem. 1989, 264, 19654-8. (c) Hibbs, J. B., Jr.; Taintor, R. R.; Vavrin,
Z. Science 1987, 235, 473-6. (d) De Master, E. G.; Raij, L.; Archer, S. L.;
Weir, E. K Biochem. Biophys. Res. Commun. 1989, 163, 527-33.
(13) Marletta, M. A. J. Biol. Chem. 1993, 268, 12231-4.
(14) Korth, H.-G.; Sustmann, R.; Thater, C. C.; Butler, A. R.; Ingold, K.
U. J. Biol. Chem. 1994, 269, 17776-9.
10.1021/ja005900u CCC: $20.00 © 2001 American Chemical Society
Published on Web 02/27/2001