10.1002/chem.201603767
Chemistry - A European Journal
FULL PAPER
2
2
⟨
| ⟩4
4f L 8πe2
[4]
[5]
[6]
Y. Gerasymchuk, L. Tomachynski, M. Guzik, A. Koll, J. Jański, Y.
Guyot, W. Stręk, G. Boulon J. Legendziewicz, J. Photochem. Photobio.
A 2015, 309, 65–71.
' '
*
〈
〉
〈
| ∑ ( ) ( )| 〉
WEx
=
4 | α J ∥S∥αJ | | φ iμz i sm i φ | F (6)
(
)
2J+1 3ℏRL
<4f│L> is the overlap integral between the 4f orbitals and ligand
eigenfunctions, Sm is a spherical component of the spin operator of
electron i in the ligand, μz is the z-component of its dipole operator, F is
the donor-acceptor spectral overlap that depends on the appropriate
energy mismatch conditions and S is the total spin operator of the Ln3+
ion. The selections rules on J are obtained using the reduced matrix
elements of the unit tensor operators U(λ) and those for the total spin
operator S. From the above matrix elements, as far as J is considered a
good quantum number, the selection rules are │J-J’│=0 or 1, for the
exchange mechanism, and J’-J ≤ λ ≤ J+J’ for the Coulomb mechanism, in
both cases J’=J=0 excluded.
G. F. de Sꢀ, O. L. Malta, C. de Mello Donegꢀ, A. M. Simas, R. L.
Longo, P. A. Santa-Cruz, E. F. da Silva Jr., Coord.Chem.Rev. 2000,
196, 165-195.
P. Gawryszewska, O. L. Malta, R. L. Longo, F. R. Gonçalves e Silva, S.
Alves, K. Mierzwicki, Z. Latajka, M. Pietraszkiewicz, J. Legendziewicz,
ChemPhysChem 2004, 5, 1577-1584.
[7]
[8]
[9]
J.-C. G. Bünzli, Coord. Chem. Rev. 2015, 293-294, 19–47.
M. J. Kleinerman, J. Chem. Phys. 1969, 51, 2370–2375.
E. Huskowska, I. Turowska-Tyrk, J. Legendziewicz, J. P. Riehl, New J.
Chem. 2002, 26, 1461-1467.
[10] G. A. Hebbink, A. I. Klink, L. Grave, P. G. B. Oude Alink, F. C. J. M. van
Veggel, ChemPhysChem 2002, 3, 1014-1018.
The spectral overlap factor has been given by the following expression
[11] M. H. V. Werts, J. W. Hofstraat, F. A. J. Geurts, J. W. Verhoeven,
Chem. Phys. Lett. 1997, 276, 196-201.
[28]
[12] F. Vögtle, M. Gorka, V. Vicinelli, P. Ceroni, M. Maestri, V. A. Balzani,
ChemPhysChem 2001, 12, 769-773.
2
1
Δ
√
퐹 =
ln(2) 푒푥푝 [− (ℏ훾) ln(2)]
(7)
ℏ훾
휋
[13] V. Vicinelli, P. Ceroni, M. Maestri, V. Balzani, M. Gorka, F. Vögtle, J.
Am. Chem. Soc. 2002, 124, 6461-6468.
where ħγ is the (barycenter) band width at half-height of the appropriate
transition in the ligand and Δ is the difference between this transition
energy and the energy barycenter of the α’J’↔αJ transition. For back
transfer, the rates should be multiplied by the activation energy barrier
[14] F. R. Gonçalves e Silva, O. L. Malta, C. Reinhard, H.-U. Güdel, C.
Piguet, J. E. Moser, J.-C. G. Bünzli, J. Phys. Chem. A 2002, 106, 1670-
1677.
−∆
[15] J. R. G. Thorne, J. M. Rey, R. G. Denning, S. E. Watkins, M. Etchells,
M. Green, V. Christou, J. Phys. Chem. A 2002, 106, 4014-4021.
[16] I. Mekkaoui Alaoui, J. Phys. Chem. 1995, 99, 13280-13282.
[17] J. Andres, A.-S. Chauvin, Phys. Chem. Chem. Phys. 2013, 15, 15981-
15994.
[51]
Boltzmann factor 푒푘퐵
푇
Calculated quantum yield. The appropriate rate equations were solved
analytically corresponding to the energy level diagram in Figs. 9,10, by
assuming that under low power excitation, the normalized population of
the ground state is equal to one. The theoretical result for the
luminescence quantum yield is given by:
[18] V. F. Plyusnin, A. S. Kupryakov, V. P. Grivin, A. H. Shelton, I. V.
Sazanovich, A. J. H. M. Meijer, J. A. Weinstein, M. D. Ward,
Photochem. Photobiol. Sci. 2013, 12, 1666-1679.
[19] J. Bruno, W. D. Horrocks Jr., R. J. Zauhar, Biochemistry 1992, 31,
7016–7026.
1
WETT
[(τ-T1+WETT)τS]
q= (σσ ) Aradτ [
] [WETS
+
]
(8)
Em
τ-S1+WETS
[20] A. Guenet, F. Eckes, V. Bulach, C. A. Strassert, L. De Cola, M. W.
Hosseini, ChemPhysChem 2012, 13, 3163-3171.
Abs
where τ is the lifetime of the 5D0 (Eu3+) or 5D4 (Tb3+) levels, τS and τT are
[21] J. H. Ryu, Y. K. Eom, J.-C. G. Bünzli, H. K. Kim, New J. Chem. 2012,
36, 723–731.
the decay times respectively of the singlet and triplet states,휎 is the ratio
퐸푚
휎
퐴푏푠
between the energy barycenters of the transitions.
[22] V. V. Utochnikova, A. D. Kovalenko, A. S. Burlov, L. Marciniak, I. V.
Ananyev, A. S. Kalyakina, N. A. Kurchavov, N. P. Kuzmina, Dalton
Trans. 2015, 44, 12660-12669.
All calculations were made by using program Mathcad 14.0@.
[23] P. Guerriero, P. A. Vigato, J.-C. G. Bünzli, E. Moret, J. Chem. Soc.,
Dalton Trans. 1990, 2, 647–655.
[24] R. C. Howell, K. V. N. Spence, I. A. Kahwa, A. J. P. White, D. J.
Williams, J. Chem. Soc., Dalton Trans. 1996, 6, 961–968.
[25] R. Rodríguez-Cortiñas, F. Avecilla, C. Platas-Iglesias, D. Imbert, J.-C.
G. Bünzli, A. Blas, T. Rodríguez-Blas, Inorg. Chem. 2002, 41, 5336–
5349.
Acknowledgements
The authors wish to acknowledge support through the grant
of Minister of Science and Higher Education POIG.01.01.02-
02-006/09 and the grant Minister of Science and Higher
Education for young scientists 2432/M/WCH/14.
[26] M. A. Katkova, A. V. Borisov, G. K. Fukin, E. V. Baranov, A. S.
Averyushkin, A. G. Vitukhnovsky, M. N. Bochkarev, Inorg. Chim. Acta
2006, 359, 4289–4296.
[27] O. L. Malta, J. Non-Cryst. Solids 2008, 354, 4770-4776.
[28] O. L. Malta, J. Legendziewicz, E. Huskowska, I. Turowska-Tyrk; R. Q.
Albuquerque, C. De Mello Donegꢀ, F. R. Gonçalves e Silva, J. Alloys
Compd. 2001, 323-324, 654-660.
Keywords: lanthanide • luminescence •
sulphonylamidophosphates • energy transfer • crystal structure
[29] O. L. Malta, J. Lumin. 1997, 71, 229-236.
[1]
Lanthanide Luminescence Photophysical, Analytical and Biological
Aspects, Vol. 7 (Eds: P. Hänninen, H. Härma), Springer-Verlag, Berlin
Heidelberg, 2011.
[30] K. Binnemans in Handbook on the Physics and Chemistry of Rare
Earths, Vol. 35 (Eds.: K. A. Gschneidner Jr., J.-C. G. Bünzli, V. K.
Pecharsky) Elsevier Science B.V, Amsterdam, 2005, pp 107-272.
[31] J. Kai, M. C. F. C. Felinto, L. A. O. Nunes, O. L. Malta, H. F. Brito, J.
Mater. Chem. 2011, 21, 3796-3802.
[2]
[3]
N. Sabbatini, M. Guardigli, J.-M. Lehn, Coord. Chem. Rev. 1993, 123,
201-228.
E. Huskowska, P. Gawryszewska, J. Legendziewicz, C. L. Maupin, J.
P. Riehl, J. All. Comp. 2000, 303-304, 325-330.
[32] P. P. Lima, M. M. Nolasco, F. A A. Paz, R. A. S. Ferreira, R. L. Longo,
O. L. Malta, L. D. Carlos, Chem. Mater. 2013, 25, 586-598.
[33] E. B. Gibelli, J. Kai, E. E. S. Teotonio, O. L. Malta, M. C. F. C. Felinto,
H. F. Brito, J. Photochem. Photobiol., A 2013, 251, 154-159.
This article is protected by copyright. All rights reserved.