10.1002/anie.201907115
Angewandte Chemie International Edition
COMMUNICATION
Next,computational studies[25] were carried out to gain
Drug Innovation Major Project of the Ministry of Science and
Technology of China (2018ZX09711001-005-002)
mechanistic
insights
into
the
enantioselective
sulfenylation/semipinacol rearrangement of 1,1-disubstituted
allylic alcohol 3a. After the formation of 12a, the sulfenyl group
transfer via electrophilic attack to the terminal alkenyl carbon of
3a can occur in a SN2 manner. Two approaching modes of the
sulfenyl group from both Si and Re sides of 3a were considered
and the corresponding transition states were designated as
TS1a and TS1b, respectively. The optimized TS1a is
characterized by a lengthening of the Se...S distance to 2.58 Å
while shortening the S…C distance to 2.35 Å. In addition, a π...π
interaction between the phenyl rings of 3a and the sulfenyl group
was found in TS1a. The presence of (S)-CPA- anion favors the
formation of O—H…O and C—H…O H-bonds with 3a.
Analogous geometrical features are also found in TS1b except
for the orientation of (S)-CPA- anion. When the sulfenyl group of
12a approaches the alkenyl carbon from the Si side of 3a, the
two bulky groups of 1a and (S)-CPA- anion stay away from each
other. However, when the sulfenyl group attacks from the Re
side of 3a, there is steric hindrance between the bulky groups of
(S)-CPA- and 1a. Therefore, the predicted free energy barrier via
TS1a is 3.7 kcal/mol lower than that of TS1b, meaning that the
attack from the Si side of 3a is favored (Figure 3). Subsequently,
a thiiranium intermediate could be yielded and the catalyst 1a is
regenerated. Afterwards, the ring opening of the S-containing
three membered ring and the semipinacol rearrangement via the
1,2-carbon migration, accompanying with the proton transfer
from hydroxyl group of 3a to (S)-CPA- anion, could take place to
produce the desired product (4). The computational results
suggest that the rate-limiting step from 12a to the final product is
the electrophilic attack of the sulfenyl group to 3a. The
enantioselectivity of product is determined by the favorable
attack of sulfenyl group of 12a from the Si side of 3a to minimize
the steric hindrance between the bulky groups of 1a and (S)-
CPA- anion.[26]
In conclusion, we have successfully developed the first
example of an enantioselective sulfenylation/semipinacol
rearrangement of 1,1-disubstituted and tri-substituted allylic
alcohols, using a chiral Lewis base and a chiral Brønsted acid as
co-catalysts. This method provides an efficient, direct and facile
synthetic access to enantiomerically enriched β-phenylthio
ketones. Moreover, a chiral all-carbon quaternary stereocenter
was efficiently constructed; in particular, two adjacent
stereocenters were also smoothly formed using trisubstituted
allylic alcohols. Additionally, a convenient synthesis of the
natural product (-)-herbertene and a one-pot synthesis of chiral
sulfoxide and sulfone demonstrated the synthetic utility of this
methodology. The success of a gram-scale transformation
demonstrates that the enantioselective sulfenylation reaction is
transferable to a preparative scale. These chiral sulfur-ketone
products or their analogs may be useful as chiral auxiliaries or
intermediates in asymmetric catalysis and organic synthesis.
Keywords: Semipinacol Rearrangement • Quaternary Center•
Sulfur Compound • Spirocyclic Skeleton • Co-catalysis
[1]
[2]
(a) A. Nudelman, The Chemistry of Optically Active Sulfur Compounds,
Gordon and Breach, New York, 1984; (b) Sulphur‐Containing Drugs
and Related Organic Compounds, (Ed.: L. A. Damani), Wiley, New
York, 1989; (c) M. R. Prinsep, Stud. Nat. Prod. Chem. 2003, 28, 617-
715; (d) M. Feng, B. Tang, S. H. Liang, X. Jiang, Curr. Top. Med. Chem.
2016, 16, 1200-1216.
(a) H. Butenschön, Chem. Rev. 2000, 100, 1527-1564; (b) V. K.
Aggarwal, C. L. Winn, Acc. Chem. Res. 2004, 37, 611-620; (c) M.
Mellah, A. Voituriez, E. Schulz, Chem. Rev. 2007, 107, 5133-5209; (d)
T. Hashimoto, Y. Kawamata, K. Maruoka, Nat. Chem. 2014, 6, 702-
705; (e) S. Otocka, M. Kwiatkowska, L. Madalińska, P. Kiełbasiński,
Chem. Rev. 2017, 117, 4147-4181; (f) M.-M. Li, Y. Wei, J. Liu, H.-W.
Chen, L.-Q. Lu, W.-J. Xiao, J. Am. Chem. Soc. 2017, 139, 14707-
14713.
[3]
[4]
(a) B. M. Trost, Chem. Rev. 1978, 78, 363-382; (b) B. M. Trost, Acc.
Chem. Res. 1978, 11, 453-461; (c) R. D. Norcross, I. Paterson, Chem.
Rev. 1995, 95, 2041-2114; (d) D. J. Faulkner, Nat. Prod. Rep. 1995, 12,
223-269; (e) A. El-Awa, M. N. Noshi, X. M. du Jourdin, P. L. Fuchs,
Chem. Rev. 2009, 109, 2315-2349.
For selected reviews of constructing chiral organosulfur compounds,
see: (a) W. Adam, R. M. Bargon, Chem. Rev. 2004, 104, 251-262; (b)
W. Liu, X. Zhao, Synthesis 2013, 45, 2051-2069; (c) P. Chauhan, S.
Mahajan, D. Enders, Chem. Rev. 2014, 114, 8807-8864; (d) J.-S. Yu,
H.-M. Huang, P.-G. Ding, X.-S. Hu, F. Zhou, J. Zhou, ACS Catal. 2016,
6, 5319-5344; (e) K. L. Dunbar, D. H. Scharf, A. Litomska, C. Hertweck,
Chem. Rev. 2017, 117, 5521-5577.
[5]
[6]
[7]
For selected examples on sulfur-nucleophile additions, see: (a) H.-H.
Lu, F.-G. Zhang, X.-G. Meng, S.-W. Duan, W.-J. Xiao, Org. Lett. 2009,
11, 3946-3949; (b) S. Shaw, J. D. White, Org. Lett. 2015, 17, 4564-
4567; (c) Z. Wang, F. K. Sheong, H. H. Y. Sung, I. D. Williams, Z. Lin, J.
Sun, J. Am. Chem. Soc. 2015, 137, 5895-5898; (d) D. Qian, L. Wu, Z.
Lin, J. Sun, Nat. Commun. 2017, 8, 567; (e) D. Qian, M. Chen, A. C.
Bissember, J. Sun, Angew. Chem., Int. Ed. 2018, 57, 3763-3766;
Angew. Chem. 2018, 130, 3825-3828.
For selected examples on 2,3-sigmatropic rearrangements of sulfonium
ylides, see: (a) P. C. Cagle, A. M. Arif, J. A. Gladysz, J. Am. Chem. Soc.
1994, 116, 3655-3656; (b) K. J. Hock, R. M. Koenigs, Angew. Chem.,
Int. Ed. 2017, 56, 13566-13568; Angew. Chem. 2017, 129, 13752-
13754; (c) Z. Zhang, Z. Sheng, W. Yu, G. Wu, R. Zhang, W.-D. Chu, Y.
Zhang, J. Wang, Nat. Chem. 2017, 9, 970; (d) X. Lin, Y. Tang, W. Yang,
F. Tan, L. Lin, X. Liu, X. Feng, J. Am. Chem. Soc. 2018, 140, 3299-
3305.
For selected examples on sulfenylation reactions, see: (a) X. Li, C. Liu,
X.-S. Xue, J.-P. Cheng, Org. Lett. 2012, 14, 4374-4377; (b) S.
Shirakawa, T. Tokuda, A. Kasai, K. Maruoka, Org. Lett. 2013, 15, 3350-
3353; (c) Z. Jin, J. Xu, S. Yang, B.-A. Song, Y. R. Chi, Angew. Chem.,
Int. Ed. 2013, 52, 12354-12358; Angew. Chem. 2013, 125, 12580-
12584; (d) L. Cui, Y. e. You, X. Mi, S. Luo, Org. Chem. Front. 2018, 5,
2313-2316.
[8]
[9]
For selected reviews of enantioselective halogenations of alkenes, see:
(a) C. K. Tan, L. Zhou, Y.-Y. Yeung, Synlett 2011, 1335-1339; (b) S. E.
Denmark, W. E. Kuester, M. T. Burk, Angew. Chem., Int. Ed. 2012, 51,
10938-10953; Angew. Chem. 2012, 124, 11098-11113; (c) M. L. Landry,
N. Z. Burns, Acc. Chem. Res. 2018, 51, 1260-1271.
(a) S. E. Denmark, D. J. P. Kornfilt, T. Vogler, J. Am. Chem. Soc. 2011,
133, 15308-15311; (b) S. E. Denmark, A. Jaunet, J. Am. Chem. Soc.
2013, 135, 6419-6422; (c) S. E. Denmark, H. M. Chi, J. Am. Chem. Soc.
2014, 136, 3655-3663; (d) S. E. Denmark, S. Rossi, M. P. Webster, H.
Wang, J. Am. Chem. Soc. 2014, 136, 13016-13028; (e) S. E. Denmark,
Acknowledgements
This work was supported by the NSFC (21702135, 21871178
21871117, 21672145, 21290181, and 21642004), and The
This article is protected by copyright. All rights reserved.