S. Ghosh et al. / Tetrahedron Letters 52 (2011) 2869–2872
2871
Table 1 (continued)
Entry
Substrate
Producta
Yieldb (%) [lit.18c yield (%)]
Mp (°C)
Time (min)
H
O
O
O
O
O
A (h
B (MW): 78[89]
m): 87
8
91–92
15
20
O
O
O
1h
3h
H
COOH
O
A (h
B (MW): 56
m): 89
9
192
O
3i
OH
1i
a
All products were characterized by their satisfactory spectral data and also by comparison with literature data (vide Supplementary data).
Yield refers to combined amounts of first and second crops of products obtained either from aqueous ethanol (Method A) or after chromatography (Method B).
b
O
H
O
O
O
O
O
aq. ethanol (1:1) / hν
O
..
O
O
OH
OH
MW / neutral Al2O3
1i
2
CH3COCH3
COOH
O
COO
O
-H / + H
O
O
H
3i
Scheme 2. Photochemical Knoevenagel condensation of salicylaldehyde and Meldrum’s acid.
8. Fildes, D.; Caignaert, V.; Villemin, D.; Jaffres, P. A. Green Chem. 2001, 3, 52–56.
9. Bandgar, B. P.; Uppalla, L. S.; Sadavarte, V. S. J. Chem. Res., Synop. 2002, 40–41.
10. Hu, Y.; Wei, P.; Huang, H.; Le, Z.-G.; Chen, Z.-C. Synth. Commun. 2005, 35, 2955–
2960.
side reactions such as Norrish Type I cleavage in the absence of any
catalyst, support or promoter and may be considered as an excel-
lent improvement over the existing methods.
11. Mudhar, H.; Witty, A. Tetrahedron Lett. 2010, 51, 4972–4974.
12. Song, A.; Wang, X.; Lam, K. S. Tetrahedron Lett. 2003, 44, 1755–1758.
13. Rao, P. S.; Venkatratnam, R. V. Indian J. Chem. 1993, 32B, 484.
14. Villemin, D. Chem. Ind. 1983, 478–479.
Acknowledgments
15. Thorat, M. T.; Jagdale, M. H.; Mane, R. B.; Salunkhe, M. M.; Wadagaonkar, P. P.
Curr. Sci. 1987, 56, 771–772.
Financial assistance is provided to one of the authors (J.D.) from
UGC, Govt. of India. Also partial funding from DST-PURSE and CAS,
Department of Chemistry, Jadavpur University is acknowledged.
16. Bandgar, B. P.; Uppalla, L. S.; Kurule, D. S. Green Chem. 1999, 1, 243–245.
17. (a) Hedge, J. A.; Kruse, C. W.; Snyder, H. R. J. Org. Chem. 1961, 26, 3166–3170;
(b) Shi, D. Q.; Wang, Y. C.; Lu, Z. S.; Dai, G. Y. Synth. Commun. 2000, 30, 713–726.
18. (a) Abdallah-El, A. S.; Texier-Boulet, F.; Hamelin, J. Synthesis 1994, 258–260; (b)
Huang, Z. Z.; Wu, L. L.; Huang, X. Hecheng Huaxue 1998, 6, 184; (c) Chakrabarty,
M.; Mukherjee, R.; Chakrabarty, M.; Arima, S.; Harigaya, Y. Lett. Org. Chem.
2006, 3, 868–871.
19. Kaupp, G.; Naimi-Jamal, M. R.; Schmeyers, J. Tetrahedron 2003, 59, 3753–3760.
20. Watson, B. T.; Christiansen, G. E. Tetrahedron Lett. 1998, 39, 6087–6090.
21. Bigi, F.; Carloni, S.; Ferrari, L.; Maggi, R.; Mazzacani, A.; Sartori, G. Tetrahedron
Lett. 2001, 42, 5203–5205.
Supplementary data
Supplementary data associated with this article can be found, in
References and notes
22. Hoffmann, N. Chem. Rev. 2008, 108, 1052–1053.
23. Fagnoni, M.; Dondi, D.; Ravelli, D.; Albini, A. Chem. Rev. 2007, 107, 2725–2756.
24. Ghosh, S. N.; Das, J. Tetrahedron Lett. 2011, 52, 1112–1116. and references cited
therein.
25. Murray, R. D. H.; Mendez, J.; Brown, S. A. The Natural Coumarins: Occurrence,
Chemistry and Biochemistry; John Wiley & Sons: New York, 1982.
26. Khalfan, H.; Abuknesha, R.; Rand-Weaver, M.; Price, R. G.; Robinson, D.
Histochem. J. 1986, 18, 497–499.
1. Meldrum, A. N. J. Chem. Soc. 1908, 93, 598–601.
2. Davidson, D.; Bernhard, S. A. J. Am. Chem. Soc. 1948, 70, 3426–3428.
3. (a) Dumas, A. M.; Fillion, E. Acc. Chem. Res. 2010, 43, 440–454; (b) Fillion, E.;
Wilsily, A.; Fishlock, D. J. Org. Chem. 2009, 74, 1259–1267; (c) Nakamura, S.;
Hirao, H.; Ohwada, T. J. Org. Chem. 2004, 69, 4309–4316; (d) Lee, I.; Han, I. S.;
Kim, C. K.; Lee, H. W. Bull. Korean Chem. Soc. 2003, 24, 1141–1149; (e) Byun, K.;
Mo, Y.; Gao, J. J. Am. Chem. Soc. 2001, 123, 3974–3979.
4. Reviews: (a) McNab, H. Chem. Soc. Rev. 1978, 7, 345–358; (b) Tietze, L. F.;
Beifuss, U. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I.,
Heathcock, C. H., Eds.; Pergamon: Oxford, England, 1991; Vol. 2, p 341; (c)
Chen, B.-C. Heterocycles 1991, 32, 529–597.
27. Peroni, E.; Caminati, G.; Baglioni, P.; Nuti, F.; Chelli, M.; Papini, A. M. Bioorg.
Med. Chem. Lett. 2002, 12, 1731–1734.
28. Specht, D. P.; Martic, P. A.; Farid, S. Tetrahedron 1982, 38, 1203–1211.
29. Williams, J. L. R.; Specht, D. P.; Farid, S. Polym. Eng. Sci. 1983, 23, 1022–1024.
30. Method A: An equimolar quantity of Meldrum’s acid (2) (10 mmol) and
different aromatic aldehydes (1a–i) were taken in aqueous-ethanol mixture
(20 mL, 1:1 proportion) and irradiated with a 150 W tungsten lamp (Philips
India Ltd.). The reaction time varied on an average from 10 to 20 min for
different aromatic aldehydes (monitored by TLC after 5 min interval). Upon
5. Shirokava, E. A.; Segal, G. M.; Torgov, I. V. Bioorg. Khim. 1988, 14, 236–242.
6. Corey, E. J. J. Am. Chem. Soc. 1952, 74, 5897–5905.
7. (a) Scuster, P. O.; Polansky, E.; Wessely, F. Monatsch. Chem. 1964, 95, 53–58; (b)
Kraus, G. A.; Krolski, M. E. J. Org. Chem. 1986, 51, 3347–3350.