E. Vinogradov et al. / Carbohydrate Research 339 (2004) 2045–2047
2047
showed best fit between calculated and experimental
data for -BacN and -GalNA. This conclusion agrees
with the observed optical rotation of the polysaccharide
MeOH (2.0 mL), cooled in a dry ice/acetone bath, fol-
lowed by addition of acetyl chloride (0.1 mL). The dis-
solved material was kept at 70 ꢁC for 24 h, dried in an air
stream, and the products were separated by HPLC with
UV detection (220 nm) on a C18 column (Phenomenex
Aqua, 10 · 250 mm) using a gradient of water to 90%
MeCN. Fractions were also analyzed for the presence of
sugars by charring spots on TLC plate after dipping in
D
L
½
aꢀ )53 (c 1, water), which is to be expected qualita-
D
tively for the sum of two negative values contributed by
a-
Rha. The optical rotation of the disaccharide 2 was )16
c 0.2, water) due to canceling of positive contribution of
a- -BacN and negative of a- -GalNA; it would have
L
-GalNA and b-
D
-BacN, and one positive from a-
D-
(
D
L
2 4
5% H SO in MeOH.
large absolute value in case of identical configuration of
both monosaccharide residues.
The structure of the R. pickettii polysaccharide
includes a fragment:
References
1
2
. Yabuuchi, E.; Kosako, Y.; Yano, I.; Hotta, H.; Nishiuchi,
Y. Microbiol. Immunol. 1995, 39, 897–904.
. Vaneechoutte, M.; Kampfer, P.; De Baere, T.; Falsen, T.;
Verschraegen, G. Int. J. Syst. Evol. Microbiol. 2004, 54,
317–327.
. Hayward, A. In Bacterial Wilt: The Disease and its
Causative Agent, Pseudomonas solanacearum; Hartman,
G. L., Hayward, A., Eds.; CAB International: Oxford,
England, 1994; pp 127–135.
!
4Þ-a-l-GalNAcA-ð1 ! 3Þ-b-d-BacNAc-ð1 !
which is present in other polysaccharides of Gram-
negative bacteria, particularly in the O:3 serogroup of
Pseudomonas aeruginosa, which may lead to serologi-
cal cross-reactivity.
21
3
1. Experimental
4. Coenye, T.; Vandamme, T.; LiPuma, J. J. Int. J. Syst.
Evol. Microbiol. 2003, 53, 1339–1342.
5
. Labarca, J. A.; Trick, W. E.; Peterson, C. L.; Carson, L.
A.; Holt, S. C.; Arduino, M. J.; Meylan, M.; Mascola, L.;
Jarvis, W. R. Clin. Infect. Dis. 1999, 29, 1281–
1
.1. General methods
1
13
H and C NMR spectra were recorded using a Varian
Inova 500 spectrometer in D
1
286.
2
O soln at 40 ꢁC for the
6. Verschraegen, G.; Claeys, G.; Meeus, G.; Delanghe, M.
J. Clin. Microbiol. 1985, 21, 278–279.
7. McNeil, M. M.; Solomon, S. L.; Anderson, R. L.; Davis,
B. J.; Spengler, R. F.; Reisberg, B. E.; Thornsberry, C.;
Martone, W. J. J. Clin. Microbiol. 1985, 22, 903–
polysaccharide and at 25 ꢁC for mono- and oligosac-
charides with acetone standard (2.225 ppm for H and
3
1
13
1.5 ppm for C) using standard pulse sequences
COSY, TOCSY (mixing time 120 ms), NOESY (mixing
time 200 ms), HSQC, and HMBC (optimized for a 5 Hz
coupling constant).
9
07.
8. Lacey, S.; Want, S. V. J. Hosp. Infect. 1991, 17, 45–
1.
. Pickett, M. J. J. Clin. Microbiol. 1994, 32, 1132–1133.
1
1
1
1
5
9
For monosaccharide analysis, the polysaccharide
0. Candoni, A.; Trevisan, R.; Patriarca, F.; Silvestri, F.;
Fanin, R. Eur. J. Haematol. 2001, 66, 355–356.
1. Raveh, R.; Simhon, A.; Gimmon, Z.; Sacks, T.; Shapiro,
M. Clin. Infect. Dis. 1993, 17, 877–880.
2. Ralston, E.; Palleroni, N. J.; Doudoroff, M. Int. J. Syst.
Bacteriol. 1973, 23, 15–19.
3. Riley, P. S.; Weaver, R. E. J. Clin. Microbiol. 1975, 1, 61–
(
0.5 mg) was hydrolyzed (0.2 mL of 3 M TFA, 100 ꢁC,
h), followed by evaporation to dryness under a stream
of air. The residue was dissolved in water (0.5 mL),
reduced with NaBH
2
4
(ꢁ5 mg, 1 h), neutralized with
concd HOAc (0.3 mL), dried, and MeOH (1 mL) was
added. The mixture was dried twice with the addition of
MeOH, and the residue was acetylated with Ac O
6
4.
2
14. Bruins, M. R.; Kapil, S.; Oehme, F. W. Ecotoxicol.
Environ. Saf. 2000, 47, 105–111.
5. Anderson, R. L.; Bland, L. A.; Favero, M. S.; McNeil, M.
M.; Davis, B. J.; Mackel, D. C.; Gravelle, C. R. Appl.
Environ. Microbiol. 1985, 50, 1343–1348.
(
0.5 mL, 100 ꢁC, 30 min), dried, and analyzed by GC on
1
a HP1 capillary column (30 m · 0.25 mm) with a flame
ionization detector (Agilent 6850 chromatograph) in a
temperature gradient of 170 (4 min) to 260 ꢁC at 4 ꢁC/
min or on a Varian Saturn 2000 ion-trap GS–MS
instrument in the same conditions.
1
6. Fava, F.; Armenante, P. M.; Kafkewitz, D. Lett. Appl.
Microbiol. 1995, 21, 307–312.
17. Westphal, O.; Jann, K. Methods Carbohydr. Chem. 1965,
, 83–91.
5
Gel chromatography was carried out on Sephadex G-
1
8. Kjaer, M.; Andersen, K. V.; Poulsen, F. M. Methods
Enzymol. 1994, 239, 288–308.
9. Dictionary of Carbohydrates; Chapman & Hall: London,
5
0 (2.5 m · 95 cm) and Sephadex-15 (1.6 m · 80 cm) col-
umns using the pyridinium acetate buffer, pH 4.5 (4 mL
pyridine and 10 mL HOAc in 1 L water) as eluent,
monitored by a refractive index detector.
1
1
20. Lipkind, G. M.; Shashkov, A. S.; Knirel, Y. A.; Vinog-
999.
radov, E. V.; Kochetkov, N. K. Carbohydr. Res. 1988,
1
1. Knirel, Y. A.; Vinogradov, E. V.; Shashkov, A. S.;
Wilkinson, S. G.; Tahara, Y.; Dmitriev, B. A.; Kochetkov,
N. K.; Stanislavsky, E. S.; Mashilova, G. M. Eur. J.
Biochem. 1986, 155, 659–669.
75, 59–75.
1
.2. Preparation of the polysaccharide fragments
2
For the preparation of methyl a-rhamnopyranoside and
compounds 2–4, a sample (40 mg) was suspended in dry