Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
1 as catalyst under identical conditions (Scheme 1). Interestingly, it 4 (a) E. D. Bloch, L. J. Murray, W. L. Queen, S. Chavan, S. N.
was found that the reactions gave the Ullmann coupling product as
the major product (> 70%), together with a small amount of the C–
H activation product (< 10%). The CuICuII mixed-valent complex 2
mainly catalyzed the Ullmann coupling reactions because the
Maximoff, J. P. Bigi, R. Krishna, V. K. PetDeOrsI:o1n0,.1F0.3G9/rCa5nCdCje0a2n43,2GC.
J. Long, B. Smit, S. Bordiga, C. M. Brown and J. R. Long, J. Am.
Chem. Soc., 2011, 133, 14814-14822; (b) Y. E. Cheon and M. P.
Suh, Angew. Chem., Int. Ed., 2009, 48, 2899-2903.
[CuI2CuII (CN)2]4+ unit in 2 could be regarded as an active species
5
6
(a) M. Nippe, R. S. Khnayzer, J. A. Panetier, D. Z. Zee, B. S.
Olaiya, M. Head-Gordon, C. J. Chang, F. N. Gastellano, J. R.
2
and enhance the rate of the Ullmann coupling reaction.12 The
coupling product was thus formed by oxidative addition of 2 to the
aryl iodide followed by reductive elimination. 2 also could be
recycled and reused at least five times without significant loss of
catalytic activity and MOF crystallinity (Figure S10).
Long, Chem. Sci. 2013, 4, 3934-3945; (b) O. R. Luca, R. H.
Crabtree, Chem. Soc. Rev., 2013, 42, 1440-1459.; (c) V. K. K.
Praneeth, M. R. Ringenberg, T. R. Ward, Angew. Chem., Int.
Ed., 2012, 51, 10228-10234.
Therefore, 1 can use as a redox-convertible catalyst for C–H
activation. For the coupling of heteroarenes with aryl and
heteroaryl halides, catalytically active CuI-based catalyst 1 can be
transformed through SCSC oxidation process to CuICuII-based 2,
which could selectively catalyze the Ullmann coupling reaction.
Conversely, the reduction of 2 turns on the catalytic activity for the
direct C–H bond arylation of heteroarenes, and the resulting CuI-
based catalyst 1 is highly active.
(a) L. Cañadillas-Delgado, O. Fabelo, J. A. Rodrínguez-
Velamazán, M. Lemée-Cailleau, S. A. Mason, E. Pardo, F. Lloret,
J. Zhao, X. Bu, V. Simonet, C. V. Colin and J. Rodríguez-Carvajal,
J. Am. Chem. Soc., 2012, 134, 19772-19781; (b) A. O. Polyakov,
A. H. Arkenbout, J. Baas, G. R. Blake, A. Meetsma, A. Caretta, P.
H. M. V. Loosdrecht and T. T. M. Palstra, Chem. Mater., 2012,
24, 133-139.
7 (a) J. M. Falkowski, C. Wang, S. Liu and W. Lin, Angew. Chem.,
Int. Ed., 2011, 50, 8674-8678; (b) M. Meilikhow, K. Yusenko, A.
Torrisi, B. Jee, C. Mellot-Draznieks, A. Pöppl and R. A. Fischer,
Angew. Chem., Int. Ed., 2010, 49, 6212-6215; (c) C. K. Brozek
and M. Dincă, J. Am. Chem. Soc., 2013, 135, 12886-12891; (d)
T. Liu, L. Zou, D. Feng, Y. Chen, S. Fordham, X. Wang, Y. Liu and
H. Zhou, J. Am. Chem. Soc., 2014, 136, 7813-7816; (e) J. Y. Ge,
J. Wang, J. Cheng, P. Wang, J. Ma, Q. Liu and Y. Dong, Chem.
Commun., 2014, 50, 4434-4437; (f) H. J .Choi and M. P. Suh, J.
Am. Chem. Soc., 2004, 126, 15844-15851; (g) H. R. Moon, J. H.
Kim and M. P. Suk, Angew. Chem., Int. Ed., 2005, 44, 1261-
1265; (h) P. B. Chatterjee, A. Audhya, S. Bhattacharya, S. M. T.
Abtab, K. Bhattacharya and M. Chaudhury, J. Am. Chem. Soc.,
2010, 132, 15842-15845.
In conclusion, we report the first observation of an interesting
anionic porous zeolite-like CuI complex 1 (primrose yellow) capable
of reversible structural transformation to a topologically equivalent
neutral CuICuII mixed-valent complex
2 (black) upon SCSC
oxidation/reduction. The reversible SCSC redox behavior of 1 can be
ascribed to the host-guest interactions during the redox processes
and its intrinsic features, such as the flexibility of the framework to
allow the deformation and the strong ability of the multinuclear CuI
units to capture O2 molecules. In addition, for the coupling of
heteroarenes with aryl and heteroaryl halides, C–H bond activation
products and Ullmann coupling products were obtained,
respectively, with 1 and 2 as catalyst. Therefore, the unique
structural features and redox behavior of 1 endow it with versatile
characteristics as heterogeneous catalyst such as high catalytic 8 J. Sun, F. Dai, W. Yuan, W. Bi, X. Zhao, W. Sun and D. Sun,
activity, recyclability for reuse, and redox-convertible catalyst for
the C–H bond activation reaction.
Angew. Chem., Int. Ed., 2011, 50, 7061-7064.
9 (a) Y. Huang, B. Mu, P. M. Schoenecker, C. G. Carsom, J. R.
Karra, Y. Cai and K. S. Walton, Angew. Chem., Int. Ed., 2011, 50
436-440; (b) Q. He, X. Li, Y. Liu, Z. Yu, W. Wang and C. Su,
Angew. Chem., Int. Ed., 2009, 48, 6156-6159.
We are grateful for financial support from the National Natural
Science Foundation of China (Nos. 21201152, 81330075, and
21371155) and Research Found for the Doctoral Program of Higher
Education of China (20124101110002).
,
10 M. Moliner, C. Martínez and A. Corma, Chem. Mater., 2014,
16, 246-258.
11 B. Balamurugan, B. R. Mehta and S. M. Shivaprasad, Appl.
Notes and references
Phys. Lett., 2001, 79, 3176-3178.
12 (a) F. Xu, T. Tao, K. Zhang, X. Wang, W. Huang and X. You,
Dalton Trans., 2013, 42, 3631-3645; (b) S. Arai, Y. Hashimoto,
1 (a) H. Miyasaka, Acc. Chem. Res., 2013, 46, 248-257; (b) J. Jelic,
D. Denysenko, D. Volkmer and K. Reuter, New. J. Phys., 2013,
15, 11504; (c) C. Remenyi and M. Kaupp, J. Am. Chem. Soc.,
2005, 127, 11399-11413.
T. Yamagishi and M. Hida, Bull. Chem. Soc. Jpn., 1989, 62
3143-3149.
,
2 (a) M. Okubo, D. Asakura, Y. Mizuno, J. D. Kim, T. Mizokawa, T.
Kudo and I. Honma, J. Phys. Chem. Lett., 2010, 1, 2063-2071;
(b) M. Nagarathinam, K. Saravanan, E. J. H. Phua, M. V. Reddy,
B. V. R. Chowdari and J. J. Vittal, Angew. Chem., Int. Ed., 2012,
51, 5866-5870.
3 (a) A. A. Talin, A. Centrone, A. C. Ford, M. E. Foster, V. Stavila, P.
Haney, R. A. Kinney, V. Szalai, F. E. Gabaly, H. P. Yoon, F.
Léonard and M. D. Allendorf, Science, 2014, 343, 66-69; (b) Y.
Kobayashi, B. Jacobs, M. D. Allendorf and J. R. Long, Chem.
Mater., 2010, 22, 4120-4122.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins