ChemComm
Communication
reaction is unclear at this moment, it is likely that this
Cu-catalyzed phosphorylation reaction proceeds via Cu(III) inter-
mediates (Scheme S1, ESI†).20,21
In conclusion, we have developed a method for the direct,
auxiliary-assisted intermolecular C–H phosphorylation of non-
acidic benzamide b-C–H bonds. The reaction employs inexpensive
copper acetate under mild conditions. Moreover, the process
selectively gives only the mono-substituted products and demon-
strates excellent functional group tolerance. This method offers
a new and straightforward way for the preparation of ortho-
phosphonated benzoic acid derivatives. Further investigation of
the mechanism of the phosphorylation is in progress in our
laboratory.
Scheme 2 Preparative scale experiment.
Scheme 3 A control experiment in the presence of TEMPO.
This work was supported financially by the National Pro-
gram on Key Basic Research Project of China (973 Program,
2013CB328900) and the National Science Foundation of China
(Grant No. 21202107, 21321061 and J1103315).
Different dialkyl H-phosphonates and diaryl H-phosphonates
were also examined and most of the corresponding products were
obtained in moderate yields (3a, 4b, 4c, 4e). It seems that the
steric and electronic effect of the phosphonates profoundly
affected the rate and efficiency of the transformation. When the
phosphonate coupling partner was changed to the long aliphatic
chain dihexyl phosphonate, the equivalent of the phosphonate,
the reaction time had to be increased to afford the desired
product (4c) in the process. If diphenyl phosphonate as a phos-
phate reagent participated in the reaction, the transformation was
completely blocked because of the bulky benzene rings. Thus, the
diisopropyl phosphate was found to be the best partner for the
phosphorylation of N-(quinolin-8-yl)benzamide derivatives.
Taking into account the previous observation that Ag(I)-mediated
phosphorylation of indoles19 or N,N-diethylbenzamide11 with
H-phosphonates proceeds via a radical pathway, a control experi-
ment was carried out in the presence of the radical scavenger
2,2,6,6-tetramethylpiperidine N-oxide (TEMPO). The addition of
TEMPO did not decrease the yield of the model reaction
(Scheme 3). Furthermore, this reaction did not proceed in the
absence of copper catalyst (Table 1, entry 8). These results
indicate that no radical was involved in the catalytic cycle of
the phosphorylation (Table 3). Although the mechanism of the
Notes and references
1 (a) Q. Dang, Y. Liu, D. K. Cashion, S. R. Kasibhatla, T. Jiang,
F. Taplin, J. D. Jacintho, H. Li, Z. Sun, Y. Fan, J. DaRe, F. Tian,
W. Li, T. Gibson, R. Lemus, P. D. van Poelje, S. C. Potter and
M. D. Erion, J. Med. Chem., 2011, 54, 153; (b) X. Chen, D. J. Kopecky,
J. Mihalic, S. Jeffries, X. Min, J. Heath, J. Deignan, S. Lai, Z. Fu,
C. Guimaraes, S. Shen, S. Li, S. Johnstone, S. Thibault, H. Xu,
M. Cardozo, W. Shen, N. Walker, F. Kayser and Z. Wang, J. Med.
Chem., 2012, 55, 3837.
2 (a) H. R. Allcock, M. A. Hofmann, C. M. Ambler and R. V. Morford,
Macromolecules, 2002, 35, 3484; (b) H. Onouchi, T. Miyagawa,
A. Furuko, K. Maeda and E. Yashima, J. Am. Chem. Soc., 2005,
´
127, 2960; (c) C. Queffelec, M. Petit, P. Janvier, D. A. Knight and
B. Bujoli, Chem. Rev., 2012, 112, 3777.
3 (a) G. Helmchen and A. Pfaltz, Acc. Chem. Res., 2000, 33, 336;
(b) M. R. Netherton and G. C. Fu, Org. Lett., 2001, 3, 4295;
(c) N. Kataoka, Q. Shelby, J. P. Stambuli and J. F. Hartwig, J. Org.
Chem., 2002, 67, 5553; (d) C. W. Lim, O. Tissot, A. Mattison,
M. W. Hooper, J. M. Brown, A. R. Cowley, D. I. Hulmes and
A. Blacker, Org. Process Res. Dev., 2003, 7, 379; (e) W. Tang and
X. Zhang, Chem. Rev., 2003, 103, 3029; ( f ) G. Chelucci, G. Orru` and
G. A. Pinna, Tetrahedron, 2003, 59, 9471; (g) D. S. Surry and
S. L. Buchwald, Angew. Chem., Int. Ed., 2008, 47, 6338; (h) Y. Guo,
H. Fu, H. Chen and X. Li, Catal. Commun., 2008, 9, 1842; (i) Y. Li,
L. Q. Lu, S. Das, S. Pisiewicz, K. Junge and M. Beller, J. Am. Chem.
Soc., 2012, 134, 18325.
4 T. Hirao, T. Masunaga, Y. Ohshiro and T. Agawa, Synthesis, 1981, 56.
5 For reviews of C–P bond formation, see: (a) C. Baillie and J. Xiao,
Curr. Org. Chem., 2003, 7, 477; (b) F. M. J. Tappe, V. T. Trepohl and
M. Oestreich, Synthesis, 2010, 3037; (c) C. S. Demmer, N. Krogsgaard-
Larsen and L. Bunch, Chem. Rev., 2011, 111, 7981.
Table 3 Evaluation of different phosphorylation reagentsa,b
6 (a) C. I. Herrerias, X. Yao, Z. Li and C. J. Li, Chem. Rev., 2007, 107, 2546;
(b) X. Chen, K. M. Engle, D. H. Wang and J. Q. Yu, Angew. Chem., Int. Ed.,
2009, 48, 5094; (c) T. W. Lyons and M. S. Sanford, Chem. Rev., 2010,
110, 1147; (d) W. R. Gutekunst and P. S. Baran, Chem. Soc. Rev., 2011,
40, 1976; (e) L. McMurray, F. O’Hara and M. J. Gaunt, Chem. Soc. Rev.,
2011, 40, 1885; ( f ) E. M. Beccalli, G. Broggini, A. Fasana and
M. Rigamonti, J. Organomet. Chem., 2011, 696, 277.
7 (a) Y. Gao, G. Wang, L. Chen, P. Xu, Y. Zhao, Y. Zhou and L.-B. Han,
J. Am. Chem. Soc., 2009, 131, 7956; (b) C. Hou, Y. Ren, R. Lang, X. Hu,
C. Xia and F. Li, Chem. Commun., 2012, 48, 5181; (c) C.-B. Xiang,
Y. J. Bian, X.-R. Mao and Z.-Z. Huang, J. Org. Chem., 2012, 77, 7706;
(d) O. Berger, C. Petit, E. L. Deal and J.-L. Montchamp, Adv. Synth.
Catal., 2013, 355, 1361; (e) B. Yang, T.-T. Yang, X.-A. Li, J.-J. Wang
and S.-D. Yang, Org. Lett., 2013, 15, 5024; ( f ) X. Mi, M. Huang,
J. Zhang, C. Wang and Y. Wu, Org. Lett., 2013, 15, 6266.
a
Amide (0.2 mmol), HPO(OR2)2 (2 equiv.), Cu(OAc)2 (20 mol%), NMO
8 For phosphonation of aromatic C–H bonds using a stoichiometric
amount of a transition-metal complex, see: (a) V. I. Sokolov, L. L.
Troitskaya and O. A. Reutov, J. Organomet. Chem., 1980, 202, 58;
b
(2 equiv.), Ag2CO3 (1 equiv.), DMSO (0.8 mL), 55 1C, 12 h. Isolated
yields. HPO(OC6H13 2
c
)
(5 equiv.), 24 h.
This journal is ©The Royal Society of Chemistry 2014
Chem. Commun.