Table 1 Pd-TMV chip catalyzed Suzuki reaction of aryl halides with phenylboronic acid
Concentration (mM) ArX:
C6H5B(OH)2: Base
Entry ArX
Solventa
Base
Yield of Ar-C6H5, % Yield of C6H5-C6H5, %
1
2
3
4
5
6
7
8
4-BrC6H4OCH3 CH3CN:H2O ¼ 2 : 3 Na2CO3 10 : 30 : 60
4-ClC6H4OCH3 CH3CN:H2O ¼ 2 : 3 Na2CO3 10 : 30 : 60
30.8
0
29.9
10.9
14.0
30.5
0
4-IC6H4OH
4-IC6H4OH
4-IC6H4OH
4-IC6H4OH
IC6H5
CH3CN:H2O ¼ 1 : 3 Na2CO3 10 : 20 : 30
CH3CN:H2O ¼ 2 : 3 Na2CO3 10 : 20 : 30
80.0b
68.4b
0
0
/
DMA:H2O ¼ 1 : 1
K2CO3
K2CO3
10 : 10 : 30
10 : 10 : 30
H2O
0
CH3CN:H2O ¼ 1 : 1 Na2CO3 10 : 20 : 30
133.7c
53.0
BrC6H5
CH3CN:H2O ¼ 1 : 1 Na2CO3 10 : 20 : 30
/
a
c
b
Solvent ratios are all based on volume ratio. The yield of Ar-C6H5 is calculated from the conversion of IC6H4OH on a basis of mass balance.
Byproduct from homo-coupling of C6H5B(OH)2 is the same as cross-coupling product, so the yield of biphenyl based on iodobenzene is higher
than 100%.
5 K. N. Avery, J. E. Schaak and R. E. Schaak, Chem. Mater., 2009, 21,
2176–2178.
Conclusions
6 Y. S. Nam, A. P. Magyar, D. Lee, J.-W. Kim, D. S. Yun, H. Park,
T. S. Pollom, D. A. Weitz and A. M. Belcher, Nat. Nanotechnol.,
2010, 5, 340–344.
7 S. Y. Lee, E. Royston, J. N. Culver and M. T. Harris,
Nanotechnology, 2005, 16, S435–S441.
8 S. Y. Lee, J. Choi, E. Royston, D. B. Janes, J. N. Culver and
M. T. Harris, J. Nanosci. Nanotechnol., 2006, 6, 974–981.
9 A. K. Manocchi, N. E. Horelik, B. Lee and H. Yi, Langmuir, 2010, 26,
3670–3677.
10 M. T. Klem, M. Young and T. Douglas, J. Mater. Chem., 2008, 18,
3821–3823.
11 G. Stubbs, Semin. Virol., 1990, 1, 405–412.
12 R. A. Miller, A. D. Presley and M. B. Francis, J. Am. Chem. Soc.,
2007, 129, 3104–3109.
13 H. Yi, G. W. Rubloff and J. N. Culver, Langmuir, 2007, 23, 2663–
2667.
14 M. Kobayashi, M. Seki, H. Tabata, Y. Watanabe and I. Yamashita,
Nano Lett., 2010, 10, 773–776.
15 J. S. Lim, S. M. Kim, S. Y. Lee, E. A. Stach, J. N. Culver and
M. T. Harris, J. Colloid Interface Sci., 2010, 342, 455–461.
16 A. K. Manocchi, S. Seifert, B. Lee and H. Yi, Langmuir, 2010, 26,
7516–7522.
In this paper, we demonstrated and thoroughly examined, for the
first time, the catalytic activity of TMV-templated Pd nano-
particles for the Suzuki coupling reaction toward value-added
chemical synthesis. The surface-assembled chip based format
allowed for simple catalyst and product separation as well as
simple catalysts recycling for several reaction batches. Over 90%
of the initial catalytic activity was retained for four reaction
cycles. In depth reaction condition studies indicated that the
solvent ratio played an important role in the selectivity of the
Suzuki reaction, and that a higher water content is beneficial for
the cross-coupling pathway. Importantly, these results suggest
that the viral template-based bottom-up assembly approach may
lead to facile catalyst synthesis and separation. We envision that
our TMV-templated Pd catalysis strategy can be readily
extended to other biotemplates, catalysts and reaction systems.
Acknowledgements
17 E. Royston, A. Ghosh, P. Kofinas, M. T. Harris and J. N. Culver,
Langmuir, 2008, 24, 906–912.
18 G. Plascencia-Villa, J. M. Saniger, J. A. Ascencio, L. A. Palomares
We gratefully acknowledge financial support by the Stanley
Charm Fellowship (C.Y.). Partial funding for this work was also
provided by the Wittich Family Fund for Sustainable Energy
and by the National Science Foundation under Grant No.
CBET-0941538 and DMR-1006613. GISAXS work at Argonne
National Laboratory was supported by the US Department of
Energy, BES-Chemical Sciences and BES-Scientific User Facili-
ties under Contract DE-AC-02-06CH11357 with UChicago
Argonne, LLC, operator of Argonne National Laboratory. We
thank Jessica Englehart and Yonggang Wang from Department
of Civil and Environmental Engineering of Tufts University for
the help in ICP examination.
ꢁ
and O. T. Ramırez, Biotechnol. Bioeng., 2009, 104, 871–881.
19 C. Yang, A. K. Manocchi, B. Lee and H. Yi, Appl. Catal., B, 2010, 93,
282–291.
20 C. Yang and H. Yi, Biochem. Eng. J., 2010, DOI: 10.1016/
j.bej.2010.1008.1002.
21 B. Tao and D. W. Boykin, J. Org. Chem., 2004, 69, 4330–4335.
22 M. T. Reetz and E. Westermann, Angew. Chem., Int. Ed., 2000, 39,
165–168.
23 S. M. Nobre and A. L. Monteiro, J. Mol. Catal. A: Chem., 2009, 313,
65–73.
24 H. Sakurai, T. Tsukuda and T. Hirao, J. Org. Chem., 2002, 67, 2721–
2722.
25 L. Artok and H. Bulut, Tetrahedron Lett., 2004, 45, 3881–3884.
26 V. Polshettiwar, C. Len and A. Fihri, Coord. Chem. Rev., 2009, 253,
2599–2626.
27 E. Paetzold and G. Oehme, J. Mol. Catal. A: Chem., 2000, 152,
69–76.
28 S. Bhattacharya, A. Srivastava and S. Sengupta, Tetrahedron Lett.,
2005, 46, 3557–3560.
29 S. S. Yi, D. H. Lee, E. Sin and Y. S. Lee, Tetrahedron Lett., 2007, 48,
6771–6775.
30 Y. F. Drygin, O. A. Bordunova, M. O. Gallyamov and
I. V. Yaminsky, FEBS Lett., 1998, 425, 217–221.
31 A. Guinier and G. Fournet, Small Angle Scattering of X-rays, John
Wiley and Sons, New York, 1955.
Notes and references
1 H. U. Blaser, A. Indolese, A. Schnyder, H. Steiner and M. Studer, J.
Mol. Catal. A: Chem., 2001, 173, 3–18.
2 K. P. Peterson and R. C. Larock, J. Org. Chem., 1998, 63, 3185–3189.
3 N. Miyaura and A. Suzuki, Chem. Rev., 1995, 95, 2457–2483.
4 Y. J. Lee, H. Yi, W. J. Kim, K. Kang, D. S. Yun, M. S. Strano,
G. Ceder and A. M. Belcher, Science, 2009, 324,
1051–1055.
This journal is ª The Royal Society of Chemistry 2011
J. Mater. Chem., 2011, 21, 187–194 | 193