5602
S. H. Mashraqui et al. / Tetrahedron Letters 47 (2006) 5599–5602
3. Prasad, P. N.; Williams, D. J. Introduction to Nonlinear
Optical Effects in Molecules & Polymers; Wiley: New
York, 1991.
4. Cyclophanes; Keehn, P. M., Rosenfeld, S. M., Eds.;
Academic Press: New York, 1983; Vols. I and II.
5. Vogtle, F. Cyclophane Chemistry; Wiley-VCH: Chichester,
1993.
6. Modern Cyclophane Chemistry; Gleiter, R., Hopf, H.,
Eds.; Wiley-VCH, 2004.
7. Staab, H. A. In New Aspects of Organic Chemistry;
Yoshida, Z., Shiba, T., Oshiro, Y., Eds.; VCH: Weinheim,
Germany, 1989; Chapter 10, pp 227–236.
8. Bazan, G. C.; Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak,
V.; Mukamel, S.; Bartholomew, G. P. J. Am. Chem. Soc.
2000, 122, 11956–11962.
9. Bazan, G. C.; Zyss, J.; Bartholomew, G. P.; Ledoux, I.;
Mukamel, S. J. Am. Chem. Soc. 2002, 124, 13480–13485.
10. Hong, J. W.; Gaylord, B. S.; Bazan, G. S. J. Am. Chem.
Soc. 2002, 124, 11868–11869.
11. Grimme, S. Chem. Eur. J. 2004, 19, 3423–3429.
12. Mashraqui, S. H.; Hariharasubramanian, H. Synthesis
1999, 2030–2032.
13. Ernst, L. Prog. Nucl. Magn. Reson. Spectrosc. 2000, 37,
47–190.
terms of an extra contribution to the nonlinearity co-
efficient arising from the through-space charge redistri-
bution.21 Furthermore, a small bathochromic shift in 7
relative to 10 means that transparency/nonlinearity
trade-off is not seriously compromised. The thermal
stability of 7 and model 10 measured by differential
scanning calorimetry indicated thermal decomposition
temperatures (Tg) of 300 and 325 ꢀC, respectively. For
the NLO prototype DANS,22 the Tg is 295 ꢀC. Thus,
the thermal stability of cyclophane 7 is quite appre-
ciable, which is a useful parameter for device appli-
cations.
To our knowledge, cyclophane 7 represents the first
example of an unsymmetrically polarized phane exhibit-
ing enhanced b on account of through-space charge trans-
fer contribution. Although, the b value of 7 is moderate
by current standards, nevertheless, the present results
demonstrate that unsymmetrically polarized cyclophanes
could offer a useful design strategy to access higher non-
linearity and thermally robust NLO systems.
14. Mitchell, R. H. In Cyclophanes; Keehn, P. M., Rosenfeld,
S. N., Eds.; Academic Press: New York, 1983; Vol. I, pp
239–310.
Acknowledgements
15. X-ray crystal data of 3 and 5 have been submitted to the
Cambridge database as .CIF files, CCDC no. 29740 and
no. 29741, respectively.
16. Hanna, D. C.; Smith, E. F. J. Am. Chem. Soc. 1899, 21,
381–383.
Thanks are due to CSIR, Government of India, for the
financial support and Professor P. K. Das, Indian Insti-
tute of Science, Bangalore, for providing the laser
facility.
17. Rademacher, P. In Modern Cyclophane Chemistry; Glie-
ter, R., Hopf, H., Eds.; Wiley-VCH: Germany, 2004; pp
275–310.
Supplementary data
18. Hopf, H. Angew. Chem., Int. Ed. 2001, 40, 2986–2988.
19. Energy minimization of 7 revealed a lowest energy
conformation having a partially stacked orientation of
phenyl and dicyanovinyl-substituted thienothiophene
rings, a feature also seen in the structure of 5 found by
X-ray crystallography and energy minimization. Accord-
ingly, the existence of intramolecular charge transfer in 7 is
entirely expected. (See Supplementary data.)
20. Kodiara, T.; Wanatabe, A.; Ito, O.; Matsuda, M.; Clays,
K.; Parsoons, A. J. Chem. Soc., Faraday Trans. 1997, 93,
3039–3044.
Full experimental procedures, characterization data (1H
and 13C NMR spectra) of all new compounds, energy
minimized structures of 3, 5 and 7, UV–vis spectra of
7 and 10 and NOE experiments of 3 and 5 are included.
Supplementary data associated with this article can be
References and notes
21. Zhou, X.; Ren, A.-M.; Feng, J.-K.; Liu, X.-J. J. Phys.
Chem. 2003, 107, 1850–1858.
22. Moylan, C. R.; Twieg, R. J.; Lee, V. Y.; Swanson, S. A.;
Betterton, K. M.; Miller, R. D. J. Am. Chem. Soc. 1993,
115, 12599–12600.
1. Boyd, R. W. Nonlinear Optics; Academic Press: San
Diego, 1992.
2. Seth, R. M. Chem. Commun. 2006, 131–134.