Notes
J . Org. Chem., Vol. 66, No. 11, 2001 4081
3′-Am in o-5′-for m yla m in o-2′,3′,5′-tr id eoxyu r id in e (12a ):
1H NMR (MeOH-d4, 300 MHz) δ 2.35-2.55 (m, 2H, H2′), 3.50
(m, 1H, H3′), 3.77 (m, 2H, H5′), 3.92 (m, 1H, H4′), 5.90 (d, 1H,
H5, J HH ) 8.0 Hz), 6.29 (dd, 1H, H1′, J HH ) 7.1 Hz, J HH ) 4.6
Hz), 7.88 (d, 1H, H6, 3J HH ) 8.0 Hz), and 8.32 (s, 1H, HCO); MS
(ESI+, m/z) 293 [(M + K)+, 12], 277 [(M + Na)+, 100], and 255
[(M + H)+, 77].
5′-Acetyla m in o-3′-a m in o-2′,3′,5′-tr id eoxyu r id in e (12b):
1H NMR (MeOH-d4, 200 MHz) δ 2.16 (s, 3H, MeCO), 2.30-2.60
(m, 2H, H2′), 3.50 (m, 1H, H3′), 3.70 (m, 2H, H5′), 3.90 (m, 1H,
pyrimidine 3′,5′-diamino nucleoside derivatives by means
of a very simple and convenient procedure using PSL-C
or CAL-B as biocatalyst, respectively. Moreover, an
improved synthesis of pyrimidine 3′,5′-diamino-2′,3′,5′-
trideoxynucleosides has been described through a four-
step sequence and with high overall yield. A series of
N-monoacylated 3′,5′-diamino nucleosides were prepared
as potential antiviral and/or antitumor agents. The
biological activity of these derivatives will be tested, and
the results will be reported in a due course.
3
3
3
3
3
H4′), 5.90 (d, 1H, H5, J HH ) 7.9 Hz), 6.29 (dd, 1H, H1′, J HH
)
3
3
7.0 Hz, J HH ) 4.8 Hz), and 7.89 (d, 1H, H6, J HH ) 7.9 Hz); MS
(ESI+, m/z) 291 [(M + Na)+, 100], and 269 [(M + H)+, 73).
3′-Am in o-5′-bu tyr yla m in o-2′,3′,5′-tr id eoxyu r id in e (12c):
Exp er im en ta l Section 7
1H NMR (MeOH-d4, 300 MHz) δ 1.14 (t, 3H, H4′′ 3J HH ) 7.4
,
Gen er a l Meth od s. C. antarctica lipase B (CAL-B, 7300 PLU/
g) was a gift from Novo Nordisk Co. Immobilized P. cepacia
lipase (PSL-C, 783 U/g) was purchased from Amano Pharma-
ceutical Co.
Hz), 1.83 (m, 2H, H3′′), 2.35-2.55 (m, 4H, H2′ + H2′′), 3.50 (m,
1H, H3′), 3.71 (m, 2H, H5′), 3.90 (m, 1H, H4′), 5.89 (d, 1H, H5,
3J HH ) 8.0 Hz), 6.28 (dd, 1H, H1′, 3J HH ) 7.4 Hz, 3J HH ) 4.6 Hz),
3
and 7.91 (d, 1H, H6, J HH ) 8.0 Hz); MS (ESI+, m/z) 319 [(M +
Na)+, 100], and 297 [(M + H)+, 71].
Gen er a l P r oced u r e for th e En zym a tic Acyla tion of 3′,5′-
Dia m in on u cleosid es. Corresponding ester (ethyl formate,
ethyl acetate, ethyl butyrate, methyl crotonate, and methyl
benzoate) was added to a suspension of diaminonucleoside (20
mg, 0.08 mmol, in the case of 10 it was previously dissolved in
1 mL of dry pyridine), lipase (10 mg of CAL-B or 130 mg of PSL-
C), and molecular sieves 4 Å (20 mg) in dry THF (4.5 mL) under
nitrogen, and the mixture was stirred at 250 rpm (temperature
and reaction time are indicated in Tables 1 and 2). Then, the
enzyme and molecular sieves were filtered off and washed with
MeOH (3 × 5 mL). The filtrate was evaporated to dryness, and
the crude residue was purified by flash chromatography column
(gradient eluent 10% MeOH/EtOAc-MeOH for compounds 11a -
e, 12a -e and gradient eluent 10% MeOH/EtOAc-MeOH-10%
NH3(aq)/MeOH for compounds 13a -c, 14a -c).
3′-Am in o-5′-cr oth on ylam in o-2′,3′,5′-tr ideoxyu r idin e (12d):
1H NMR (MeOH-d4, 300 MHz) δ 2.05 (dd, 3H, H4′′
,
3J HH ) 6.8
4
Hz, J HH ) 1.7 Hz), 2.35-2.55 (m, 2H, H2′), 3.50 (m, 1H, H3′),
3
3.75 (m, 2H, H5′), 3.92 (m, 1H, H4′), 5.87 (d, 1H, H5, J HH ) 8.0
Hz), 6.16 (dq, 1H, H2′′, 3J HH ) 15.1 Hz, 4J HH ) 1.7 Hz), 6.28 (dd,
3
3
3
1H, H1′, J HH ) 7.1 Hz, J HH ) 4.6 Hz), 7.00 (dq, 1H, H3′′, J HH
3
3
) 15.1 Hz, J HH ) 6.8 Hz), and 7.87 (d, 1H, H6, J HH ) 8.0 Hz);
MS (ESI+, m/z) 317 [(M + Na)+, 100], and 295 [(M + H)+, 50].
3′-Am in o-5′-ben zoyla m in o-2′,3′,5′-tr id eoxyu r id in e (12e):
1H NMR (MeOH-d4, 300 MHz) δ 2.39-2.59 (m, 2H, H2′), 3.59
(m, 1H, H3′), 3.93 (m, 2H, H5′), 4.03 (m, 1H, H4′), 5.79 (d, 1H,
3
3
3
H5, J HH ) 8.0 Hz), 6.29 (dd, 1H, H1′, J HH ) 7.1 Hz, J HH ) 4.0
3
Hz), 7.63-7.77 (m, 3H, Hm + Hp), 7.94 (d, 1H, H6, J HH ) 8.0
Hz), and 8.05 (m, 2H, Ho); MS (ESI+, m/z) 369 [(M + K)+, 15],
353 [(M + Na)+, 100], and 331 [(M + H)+, 97].
3′-Am in o-5′-for m yla m in o-3′,5′-d id eoxyth ym id in e (11a ):
1H NMR (MeOH-d4, 300 MHz) δ 2.09 (s, 3H, H7), 2.32-2.55 (m,
2H, H2′), 3.55 (m, 1H, H3′), 3.76 (m, 2H, H5′), 3.90 (m, 1H, H4′),
5′-Am in o-3′-for m yla m in o-3′,5′-d id eoxyth ym id in e (13a ):
1H NMR (D2O, 200 MHz) δ 1.70 (s, 3H, H7), 2.25-2.50 (m, 2H,
H2′), 3.04-3.29 (m, 2H, H5′), 3.92 (m, 1H, H4′), 4.42 (m, 1H, H3′),
3
3
6.33 (dd, 1H, H1′, J HH ) 7.1 Hz, J HH ) 4.8 Hz), 7.68 (s, 1H,
H6), and 8.33 (s, 1H, HCO); MS (ESI+, m/z) 291 [(M + Na)+,
100], and 269 [(M + H)+, 76].
3
3
5.97 (dd, 1H, H1′, J HH ) 7.9 Hz, J HH ) 4.7 Hz), 7.31 (s, 1H,
H6), and 7.92 (s, 1H, HCO); MS (ESI+, m/z) 291 [(M + Na)+, 2],
and 269 [(M + H)+, 100].
5′-Acetyla m in o-3′-a m in o-3′,5′-d id eoxyth ym id in e (11b):
1H NMR (MeOH-d4, 200 MHz) δ 2.09 (s, 3H, H7), 2.15 (s, 3H,
MeCO), 2.30-2.60 (m, 2H, H2′), 3.55 (m, 1H, H3′), 3.72 (m, 2H,
3′-Acetyla m in o-5′-a m in o-3′,5′-d id eoxyth ym id in e (13b):
1H NMR (D2O, 300 MHz) δ 1.77 (s, 3H, H7), 1.90 (s, 3H, MeCO),
2.31-2.52 (m, 2H, H2′), 3.12-3.33 (m, 2H, H5′), 3.99 (m, 1H, H4′),
3
3
H5′), 3.88 (m, 1H, H4′), 6.30 (dd, 1H, H1′, J HH ) 7.3 Hz, J HH
)
4.8 Hz), and 7.68 (s, 1H, H6); MS (FAB+, m/z) 283 [(M + H)+,
15], 245 (4), 180 (14), and 140 (47).
3
3
4.35 (m, 1H, H3′), 6.04 (dd, 1H, H1′, J HH ) 7.7 Hz, J HH ) 5.1
Hz), and 7.38 (s, 1H, H6); MS (ES+, m/z) 283 (M+, 100), 241 (4),
158 (23), 99 (17), and 60 (21); MS (ESI+, m/z) 283 [(M + H)+,
100].
3′-Am in o-5′-bu tyr yla m in o-3′,5′-d id eoxyth ym id in e (11c):
1H NMR (MeOH-d4, 200 MHz) δ 1.14 (t, 3H, H4′′ 3J HH ) 7.3
,
Hz), 1.83 (m, 2H, H3′′), 2.09 (s, 3H, H7), 2.30-2.57 (m, 4H, H2′
+
5′-Am in o-3′-bu tyr yla m in o-3′,5′-d id eoxyth ym id in e (13c):
1H NMR (MeOH-d4, 300 MHz) δ 1.14 (t, 3H, H4′′
,
3J HH ) 7.4
H2′′), 3.55 (m, 1H, H3′), 3.70 (m, 2H, H5′), 3.87 (m, 1H, H4′), 6.30
3
3
3
(dd, 1H, H1′, J HH ) 7.0 Hz, J HH ) 4.8 Hz), and 7.65 (s, 1H,
H6); MS (ESI+, m/z) 333 [(M + Na)+, 82], and 311 [(M + H)+,
100).
Hz), 1.83 (m, 2H, H3′′), 2.10 (s, 3H, H7), 2.38 (t, 2H, H2′′, J HH
)
7.1 Hz), 2.42-2.64 (m, 2H, H2′), 3.02-3.17 (m, 2H, H5′), 3.91 (m,
1H, H4′), 4.58 (m, 1H, H3′), 6.37 (dd, 1H, H1′, 3J HH ) 7.1 Hz, 3J HH
) 5.7 Hz), and 7.75 (s, 1H, H6); MS (ESI+, m/z) 349 [(M + K)+,
15], 333 [(M + Na)+, 33], and 311 [(M + H)+, 100].
3′-Am in o-5′-cr oth on ylam in o-3′,5′-dideoxyth ym idin e (11d):
1H NMR (MeOH-d4, 300 MHz) δ 2.05 (m, 6H, H4′′ + H7), 2.33-
2.53 (m, 2H, H2′), 3.55 (m, 1H, H3′), 3.79 (m, 2H, H5′), 3.90 (m,
1H, H4′), 6.17 (dq, 1H, H2′′, 3J HH ) 15.1 Hz, 4J HH ) 1.4 Hz), 6.29
5′-Am in o-3′-for m yla m in o-2′,3′,5′-tr id eoxyu r id in e (14a ):
1H NMR (D2O, 300 MHz) δ 2.52-2.73 (m, 2H, H2′), 3.29-3.49
(m, 2H, H5′), 4.16 (m, 1H, H4′), 4.61 (m, 1H, H3′), 5.91 (d, 1H,
3
3
(dd, 1H, H1′, J HH ) 7.1 Hz, J HH ) 4.3 Hz), 7.01 (dq, 1H, H3′′
,
3J HH ) 15.1 Hz, 3J HH ) 6.8 Hz), and 7.64 (s, 1H, H6); MS (ESI+,
H5, J HH ) 8.3 Hz), 6.18 (dd, 1H, H1′, J HH ) 7.7 Hz, J HH ) 5.1
Hz), 7.74 (d, 1H, H6, 3J HH ) 8.3 Hz), and 8.15 (s, 1H, HCO); MS
(ESI+, m/z) 277 [(M + Na)+, 5], and 255 [(M + H)+, 100].
3′-Acetyla m in o-5′-a m in o-2′,3′,5′-tr id eoxyu r id in e (14b):
1H NMR (D2O, 300 MHz) δ 1.89 (s, 3H, MeCO), 2.29-2.53 (m,
2H, H2′), 3.07-3.26 (m, 2H, H5′), 3.96 (m, 1H, H4′), 4.33 (m, 1H,
3
3
3
m/z) 331 [(M + Na)+, 100], and 309 [(M + H)+, 75].
3′-Am in o-5′-ben zoyla m in o-3′,5′-d id eoxyth ym id in e (11e):
1H NMR (MeOH-d4, 300 MHz) δ 1.90 (s, 3H, H7), 2.37-2.57 (m,
2H, H2′), 3.62 (m, 1H, H3′), 3.95 (m, 1H, H4′), 4.02 (m, 2H, H5′),
3
3
6.31 (dd, 1H, H1′, J HH ) 7.4 Hz, J HH ) 4.3 Hz), 7.63-7.77 (m,
4H, H6 + Hm + Hp), and 8.05 (m, 2H, Ho); MS (ESI+, m/z) 383
[(M + K)+, 7], 367 [(M + Na)+, 100], and 345 [(M + H)+, 94].
3
3
H3′), 5.75 (d, 1H, H5, J HH ) 8.3 Hz), 6.03 (dd, 1H, H1′, J HH
)
3
3
7.7 Hz, J HH ) 5.4 Hz), and 7.58 (d, 1H, H6, J HH ) 8.3 Hz); MS
(ESI+, m/z) 291 [(M + Na)+, 3], and 269 [(M + H)+, 100].
5′-Am in o-3′-bu tyr yla m in o-2′,3′,5′-tr id eoxyu r id in e (14c):
1H NMR (D2O, 300 MHz) δ 0.89 (t, 3H, H4′′, 3J HH ) 7.4 Hz), 1.60
(m, 2H, H3′′), 2.24 (t, 2H, H2′′, 3J HH ) 7.4 Hz), 2.40-2.68 (m, 2H,
H2′), 3.23-3.42 (m, 2H, H5′), 4.10 (m, 1H, H4′), 4.48 (m, 1H, H3′),
5.87 (d, 1H, H5, 3J HH ) 8.0 Hz), 6.14 (dd, 1H, H1′, 3J HH ) 6.2 Hz,
(7) Compounds 3,8 4,9 5,8 6,10 7,3 8,4 9,3 and 104 were previously
reported; experimental procedures and 1H and 13C NMR data are given
in the Supporting Information. For compounds 11-16, full spectral
data and copies of 1H and 13C NMR spectra are given in the Supporting
Information. The level of purity is indicated by the inclusion of
elemental analyses.
(8) Michelson, A. M.; Todd, A. R. J . Chem. Soc. 1955, 816-823.
(9) Horwitz, J . P.; Chua, J .; Da Rooge, M. A.; Noel, M.; Klundt, I. L.
J . Org. Chem. 1966, 31, 205-211.
(10) Horwitz, J . P.; Chua, J .; Noel, M.; Donatti, J . T. J . Org. Chem.
1967, 32, 817-818.
3J HH ) 5.1 Hz), and 7.70 (d, 1H, H6, J HH ) 8.0 Hz); MS (ESI+,
3
m/z) 319 [(M + Na)+, 7], and 297 [(M + H)+, 100].
3′,5′-Difor m ylam in o-3′,5′-dideoxyth ym idin e (15a): 1H NMR
(MeOH-d4, 300 MHz) δ 2.10 (s, 3H, H7), 2.47-2.70 (m, 2H, H2′),
3.65-3.89 (m, 2H, H5′), 4.11 (m, 1H, H4′), 4.62 (m, 1H, H3′), 6.34