2196
D. Huber, A. Mezzetti / Tetrahedron: Asymmetry 15 (2004) 2193–2197
1H NMR spectrum of the reaction solution (run 9)
showed that, besides the cyclopropanation products
(9%), maleate and fumarate also formed (ca. 46% and
8% yield, respectively). However, as unreacted ethyl
diazoacetate is still present in the reaction solution (ca.
27% of starting amount), the homocoupling alone does
not account for the low yield (at least in this case).
Preliminary monitoring of the reaction course by gas
chromatography suggests that the catalyst stays active
during the whole reaction time. Thus, the most probable
explanation of the low cyclopropane yield is the intrinsic
low activity of the catalyst. Finally, the system did not
show the expected cis-selectivity so far. Present efforts
are being directed to improve the activity and stereo-
selectivity of the catalyst.
12. Simal, F.; Demonceau, A.; Noels, A. F.; Knowles, D. R.
T.; O’Leary, S.; Maitlis, P.; Gusev, O. J. Organomet.
Chem. 1998, 558, 163.
13. Simal, F.; Jan, D.; Demonceau, A.; Noels, A. F. Tetra-
hedron Lett. 1999, 40, 1653.
14. Matsushima, Y.; Kikuchi, H.; Uno, M.; Takahashi, S.
Bull. Chem. Soc. Jpn. 1999, 72, 2475.
15. Baratta, W.; Herrmann, W. A.; Kratzer, R. M.; Rigo, P.
Organometallics 2000, 19, 3664.
16. Mayer, M. M.; Hossain, M. M. J. Org. Chem. 1998, 63,
6839.
17. For a recent comprehensive review of the literature, see:
(a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern
Catalytic Methods for Organic Synthesis with Diazo
Compounds: From Cyclopropanes to Ylides; New York:
Wiley, 1998, Chapter 4, pp 183–203; (b) Comprehensive
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A.,
Yamamoto, H., Eds.; Springer: Berlin, 1999; pp 513–
603, Chapter 16.
18. (a) Uchida, T.; Irie, R.; Katsuki, T. Synlett 1999, 1793; (b)
Uchida, T.; Irie, R.; Katsuki, T. Tetrahedron 2000, 56,
3501.
19. (a) Niimi, T.; Uchida, T.; Irie, R.; Katsuki, T. Adv. Synth.
Catal. 2001, 343, 79; (b) Niimi, T.; Uchida, T.; Irie, R.;
Katsuki, T. Tetrahedron Lett. 2000, 41, 3647; (c) Fukuda,
T.; Katsuki, T. Tetrahedron 1997, 53, 7201.
Acknowledgements
We thank Mr. P. G. Anil Kumar for the PGSE NMR
experiments and the Swiss National Science Foundation
for financial support to D.H. (grant 200020-101357).
20. (a) Bachmann, S.; Furler, M.; Mezzetti, A. Organometal-
lics 2001, 20, 2102; (b) Bachmann, S.; Mezzetti, A. Helv.
Chim. Acta 2001, 84, 3063; (c) Bonaccorsi, C.; Bachmann,
S.; Mezzetti, A. Tetrahedron: Asymmetry 2003, 14, 845.
21. The phosphoramidites 1a and 1b were synthesised accord-
ing to the procedure of Feringa: Arnold, L. A.; Imbos, R.;
Mandoli, A.; de Vries, A. H. M.; Naasz, R.; Feringa, B. L.
Tetrahedron 2000, 56, 2865; See also: Boiteau, J. G.;
Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2003, 68,
9481.
References and notes
1. (a) Brunner, H. Z. Anorg. Allg. Chem. 1969, 368, 120; (b)
Brunner, H. Adv. Organomet. Chem. 1980, 18, 151.
2. (a) Consiglio, G.; Morandini, F. Chem. Rev. 1987, 87, 761;
(b) Morandini, F.; Consiglio, G.; Lucchini, V. Organo-
metallics 1985, 4, 1202; (c) For seminal papers concerning
[RuCl(Cp)(P–PÃ)] complexes, see also: Morandini, F.;
Consiglio, G.; Straub, B.; Ciani, G.; Sironi, A. J. Chem.
Soc., Dalton Trans. 1983, 2293; (d) Consiglio, G.; Mor-
andini, F. J. Organomet. Chem. 1986, 310, C66.
22. Bennett, M. A.; Smith, A. K. J. Chem. Soc., Dalton Trans.
1974, 233.
3. (a) Bennett, M. A. Coord. Chem. Rev. 1997, 166, 225; (b)
For their application as stoichiometric reagents in organic
chemistry, see: Pigge, F. C.; Coniglio, J. J. Curr. Org.
Chem. 2001, 5, 757; (c) Ganter, C. Chem. Soc. Rev. 2003,
32, 130.
23. RuCl2(p-cymene)]2 (387 mg, 0.632 mmol) and 1a (750 mg,
1.39 mmol, 1.1 equiv) were dissolved in dry CH2Cl2
(20 mL) under an Ar atmosphere, with the resulting
solution stirred at room temperature for 1 h. 2-Propanol
(15 mL) was added and CH2Cl2 evaporated. The precip-
€
4. (a) Kundig, E. P.; Saudan, C. M.; Alezra, V.; Viton, F.;
Bernardinelli, G. Angew. Chem., Int. Ed. 2001, 40, 4481;
itate was filtered off and dried in vacuum to give 2a as an
23
D
orange solid. Yield: 992 mg (93%). ½a ¼ þ65 (c 0.125,
(b) Viton, F.; Bernardinelli, G.; Kundig, E. P. J. Am.
Chem. Soc. 2002, 124, 4968.
CHCl3). 1H NMR (300 MHz, CDCl3):
d
1.19 (d,
€
J ¼ 6:9 Hz, 3H, cymene-CH(CH3)2); 1.30 (d, J ¼ 6:9 Hz,
3H, cymene-CH(CH3)2); 1.71 (d, J ¼ 6:9 Hz, 6H,
CH(Ph)(CH3); 2.11 (s, 3H, cymene-CH3); 2.85 (hept,
J ¼ 6:9 Hz, 1H, cymene-CH(CH3)2); 4.38 (d, J ¼ 4:8 Hz,
1H, cymene-Harom); 4.99 (d, J ¼ 6:0 Hz, 1H, cymene-
Harom); 5.10–5.16 (m, 2H, NCH); 5.19 (d, J ¼ 6:0 Hz, 1H,
cymene-Harom); 5.24 (d, J ¼ 6:0 Hz, 1H, cymene-Harom);
6.66–8.02 (m, 22H, Harom). 31P NMR (121.5 MHz, CDCl3):
d 141.0 (s). MS (HiRes MALDI): m=z 676 ([M)(p-
cymene))Cl]þ, 100). Anal. Calcd for C46H44Cl2NO2PRu:
C, 65.32; H, 5.24; N, 1.67. Found: C, 65.44; H, 5.40; N,
1.67.
5. (a) Davies, D. L.; Fawcett, J.; Garratt, S. A.; Russell, D.
R. Chem. Commun. 1997, 1351; (b) Carmona, D.; Cativ-
iely, C.; Elipe, S.; Lahoz, F. J.; Lamata, M. P.; de Viu,
L. R.; Oro, L. A.; Vega, C.; Viguri, F. Chem. Commun.
1997, 2351; (c) Faller, J. W.; Grimmond, B. J.; D’Alliessi,
D. G. J. Am. Chem. Soc. 2001, 123, 2525; (d) Faller, J. W.;
Grimmond, B. J. Organometallics 2001, 20, 2454.
6. (a) Noyori, R. Angew. Chem., Int. Ed. 2002, 41, 2008; (b)
Ito, M.; Hirakawa, M.; Murata, K.; Ikariya, T. Organo-
metallics 2001, 20, 379.
€
7. Butenschon, H. Chem. Rev. 2000, 100, 1527.
8. Trost, B. M.; Vidal, B.; Thommen, M. Chem. Eur. J. 1999,
5, 1055.
9. Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029; See also:
Lagasse, F.; Kagan, H. B. Chem. Pharm. Bull. 2000, 48,
315.
10. Brookhart, M.; Liu, Y. M.; Goldman, E. W.; Timmers, D.
A.; Williams, G. D. J. Am. Chem. Soc. 1991, 113, 927.
11. (a) Theys, R. D.; Hossain, M. M. Tetrahedron Lett. 1995,
24. Orange crystals of 2a were grown from 2-propanol.
Crystal data: monoclinic, P21, 0.30 · 0.06 · 0.03 mm,
ꢀ
a ¼ 12:3128ð11Þ, b ¼ 13:9824ð12Þ, c ¼ 12:3910ð11Þ A,
3
ꢀ
b ¼ 112:163ð2Þꢁ, V ¼ 1975:6ð3Þ A , Z ¼ 2, F ð000Þ ¼ 872,
Dcalcd ¼ 1:422 Mg cmꢀ3, l ¼ 0:612 mmꢀ1. Data were col-
lected at room temperature on a Bruker AXS SMART
APEX platform in the h range 2.30–20.81ꢁ. The structure
was solved with SHELXTL using direct methods. Of the
7619 measured (ꢀ11 6 h 6 12, ꢀ13 6 k 6 13, ꢀ12 6 l 6 12),
4121 unique reflections were used in the refinement (full-
matrix least squares on F 2 with anisotropic displacement
€
36, 5113; (b) Wang, Q.; Fosterling, F. H.; Hossain, M. M.
Organometallics 2002, 21, 2596, and references cited
therein.