L. Fotouhi, K. Nikoofar / Tetrahedron Letters 54 (2013) 2903–2905
2905
5
-bromoindole (4a) produced the corresponding 3-thiocyanato-5-
P. J.; Humblet, Ch.; Lunney, E. A.; Pavlovsky, A.; Rubin, J.; Gracheck, S. J.;
Baldwin, E. T.; Bhat, T. N.; Erickso, N. J. W.; Gulnik, S. V.; Liu, B. J. Med. Chem.
bromoindole (4b) in a longer time compared to indole. Isatin (5a)
gave 5-thiocyanatoisatin (5b) in 75% yield within 60 min. In com-
parison to most of the organic procedures reported, the electro-
chemical isatin thiocyanation is more successful (entry 5). To
investigate the efficacy of this method we examined carbazole
1
997, 40, 3781–3792.
Kelly, T. R.; Kim, M. H.; Curtis, A. D. M. J. Org. Chem. 1993, 58, 5855–5857.
4. Gardner, W. H.; Weinberger, H. Inorg. Synth. 1946, 1, 84.
3
.
5.
6.
7.
Mackinnon, D. L.; Farrell, A. P. Environ. Toxicol. Chem. 1992, 11, 1541–1548.
Zhang, Z.; Liebeskind, L. S. Org. Lett. 2006, 8, 4331–4333.
Yadav, J. S.; Reddy, B. V. S.; Shubashree, S.; Sadashiv, K. Tetrahedron Lett. 2004,
45, 2951–2954.
Pan, X.-Q.; Lei, M.-Y.; Zou, J.-P.; Zhang, W. Tetrahedron Lett. 2009, 50, 347–349.
Chakrabarty, M.; Sarkar, S. Tetrahedron Lett. 2003, 44, 8131–8133.
(6a) as another example of a nitrogen-containing aromatic sub-
8
9
1
.
.
strate, and the corresponding 3-thiocyanatocarbazole (6b) was
obtained in 55% yield. Electrochemical thiocyanation of diphenyl-
amine (7a) generated 4-thiocyanatodiphenylamine (7b) and 4,4 -
dithiocyanatodiphenylamine (7c) in a 6:1 ratio.
0. Bacon, R. G. R.; Guy, R. G. J. Chem. Soc. 1960, 318–324.
11. Khazaei, A.; Zolfigol, M. A.; Mokhlesi, M.; Derakhshan Panah, F.; Sajjadifar, S.
0
Helv. Chim. Acta 2012, 95, 106–114.
1
2. Yadav, J. S.; Reddy, B. V. S.; Krishna, A. D.; Reddy, Ch. S.; Narsaiah, A. V. Synthesis
005, 961–964.
13. Nair, V.; Geroge, T. G.; Nair, L. G.; Panicker, S. B. Tetrahedron Lett. 1999, 40,
195–1196.
4. Akhlaghinia, B.; Pourali, A. R.; Rahmani, M. Synth. Commun. 2012, 42, 1184–
191.
A plausible mechanism for this reaction is proposed in Scheme 2.
2
ꢀ
It has been postulated that SCN is oxidized via a one-electron oxi-
dation process to a radical, which undergoes dimerization at the
electrode surface to form thiocyanogen. Then the electrogenerated
nascent thiocyanogen, (SCN)
the product. In our literature survey, we found that substrates that
were sparingly soluble in water and which had oxidation potentials
1
1
1
2
reacts with the substrate to produce
15. Weinberg, N. L.; Weinberg, H. R. Chem. Rev. 1968, 68, 449–523.
16. Klein, W. J. Electrochim. Acta 1973, 18, 413–416.
7. Gitkis, A.; Becker, J. Y. J. Electroanal. Chem. 2006, 593, 29–33.
8. Gitkis, A.; Becker, J. Y. Electrochim. Acta 2010, 55, 5854–5859.
9. Krishnan, P.; Gurjar, V. G. J. Appl. Electrochem. 1995, 25, 792–796.
1
1
1
ꢀ
25
close to that of SCN , could undergo in situ thiocyanation.
Comparing our system with this claim partially substantiates our
proposed mechanism.
20. Memarian, H. R.; Mohamadpoor-Baltork, I.; Nikoofar, K. Can. J. Chem. 2007, 85,
30–937.
1. Memarian, H. R.; Mohammadpoor-Baltork, I.; Nikoofar, K. Ultrason. Sonochem.
008, 15, 456–462.
22. Typical procedure for the electro-synthesis of 2a: 30 ml MeOH solution of indole
1a) (1 mmol, 0.117 g) and ammonium thiocyanate (5 mmol, 0.34 g) in an
9
2
In conclusion, the use of electrochemical thiocyanation has
advantages in comparison with conventional chemistry. These in-
clude: (i) in situ generation of the thiocyanating reagent, (ii) the
avoidance of using a supporting electrolyte, (iii) a one-pot reaction
affording excellent yields under mild conditions, (iv) the avoidance
of polluting or hazardous chemicals and toxic reagents and (v) in-
volves an easy work-up procedure.
2
(
undivided cell fitted with a graphite rod as the cathode and an assembly of
three graphite rods (8 mm diameter and 4 cm length) as the anode, was
subjected to electrolysis at a constant current at room temperature. A magnetic
stirrer was employed during the electrolysis. The progress of the reaction was
monitored by TLC. After completion of the reaction, the solvent was evaporated
and the resulting crude product was purified by preparative thin-layer
chromatography on silica gel (eluent: n-hexane–EtOAc, 9:1) to afford 3-
1
2
ꢀ1
thiocyanatoindole (2a) (0.165 g, 95%). Mp 105–106 °C. IR (KBr, cm ): 3334
Acknowledgment
(
(
NH), 2150 (SCN), 735 (N–H), 635 (C–S). 1H NMR (500 MHz, CDCl
m, 4H), 7.81 (d, 1H, J = 8.72 Hz), 8.90 (br s, 1H, NH). EI-MS m/z (%): 174 [M ]
(100), 148 [M ꢀCN] (63), 116 [M ꢀSCN] (28).
23. Preparative analysis was performed using a potentiostat/galvanostat system
model BHP 2061-C.
3
): 7.42–7.29
+
+
+
The authors express their gratitude for financial support from
Alzahra University.
24. Jennings, P.; Jones, A. C.; Mount, A. R.; Thomson, A. D. J. Chem. Soc., Faraday
Trans. 1997, 93, 3791–3797.
References and notes
25. Texter, J. In Reactions & Synthesis in Surfactant Systems, Surfactant Science Series;
Taylor & Francis-Library, 2005; Vol. 10, pp 302–303.
1
2
.
.
Lee, Y. T.; Choi, S. Y.; Chung, Y. K. Tetrahedron Lett. 2007, 48, 5673–5677.
Tait, B. D.; Hagen, S.; Domagala, J.; Ellsworth, E. L.; Gajda, Ch.; Hamilton, H. W.;
Vara Prasad, J. V. N.; Ferguson, D.; Graham, N.; Hupe, D.; Nouhan, C.; Tummino,