Please doChneomtCaodmjumst margins
Page 4 of 5
COMMUNICATION
Journal Name
Assembly of azides 2b, 2d, and 2m onto trivalent platform
DOI: 10.1039/D0CC06551J
12 was achieved in good efficiency (Figure 5B). Firstly, SPAAC
reaction of platform 12 with azide 2m at the DIBAC moiety
selectively proceeded without damaging the phosphine and
terminal alkyne moieties. Then, CuAAC reaction of azide 2b at
the remaining terminal alkyne moiety was realized through the
protection of the phosphinyl group with copper. Finally, we
succeeded in the deprotection and azaylide formation with azide
2d in the presence of SiliaMetS triamine. Thus, this efficient
triple-click assembly onto trivalent platform 12 will allow us to
synthesize multi-functionalized molecules from simple azide
modules.
In summary, we have developed an efficient synthetic
method of click-conjugated phosphines from phosphinyl alkynes
via the protection of phosphines with copper. Double- and triple-
click reactions assembling azides were achieved using platform
molecules having phosphinyl and alkyne moieties. Further
studies including other metals for the protection and applications
to the preparation of molecular probes are ongoing.
The authors thank Dr. Takashi Niwa (RIKEN, Center for
Biosystems Dynamics Research (BDR)) for HRMS analyses.
This work was supported by JSPS KAKENHI Grant Numbers
JP19K05451 (C; S.Y.), JP18H02104 (B; T.H.), JP18H04386
(Middle Molecular Strategy; T.H.), and JP18J11113 (JSPS
Research Fellow; T.M.); the Naito Foundation (S.Y.); the Japan
Agency for Medical Research and Development (AMED) under
Grant Numbers JP20am0101098 (Platform Project for
Supporting Drug Discovery and Life Science Research, BINDS);
and the Cooperative Research Project of Research Center for
Biomedical Engineering.
4126.
5
6
(a) A.-C. Knall and C. Slugovc, Chem. Soc. Rev., 2013, 42, 5131. (b)
Z.-J. Zheng, D. Wang, Z. Xu and L.-W. Xu, Beilstein J. Org. Chem.,
2015, 11, 2557. (c) S. Yoshida, Bull. Chem. Soc. Jpn., 2018, 91, 1293.
(d) S. Yoshida, Org. Biomol. Chem., 2020, 18, 1550.
(a) P. R. Werkhoven, H. van de Langemheen, S. van der Wal, J. A. W.
Kruijtzer and R. M. J. Liskamp, J. Pept. Sci., 2014, 20, 235. (b) V.
Vaněk, J. Pícha, B. Fabre, M. Buděšínský, M. Lepšík and J. Jiráček,
Eur. J. Org. Chem., 2015, 3689. (c) B. Fabre, J. Pícha, V. Vaněk, I.
Selicharová, M. Chrudinová, M. Collinsová, L. Žáková, M.
Buděšínský and J. Jiráček, ACS Comb. Sci., 2016, 18, 710. (d) B. Fabre,
J. Pícha, V. Vaněk, M. Buděšínský and J. Jiráček, Molecules, 2015, 20,
19310. (e) A.-C. Knall, M. Hollauf, R. Saf and C. Slugovc, Org.
Biomol. Chem., 2016, 14, 10576. (f) S. Yoshida, K. Kanno, I. Kii, Y.
Misawa, M. Hagiwara and T. Hosoya, Chem. Commun., 2018, 54,
3705. (g) T. Yokoi, H. Tanimoto, T. Ueda, T. Morimoto and K.
Kakiuchi, J. Org. Chem., 2018, 83, 12103. (h) T. Yokoi, T. Ueda, H.
Tanimoto, T. Morimoto and K. Kakiuchi, Chem. Commun., 2019, 55,
1891. (i) T. Meguro, Y. Sakata, T. Morita, T. Hosoya and S. Yoshida,
Chem. Commun., 2020, 56, 4720.
T. Meguro, N. Terashima, H. Ito, Y. Koike, I. Kii, S. Yoshida and T.
Hosoya, Chem. Commun., 2018, 54, 7904.
M. Sundhoro, S. Jeon, J. Park, O. Ramström and M. Yan, Angew.
Chem., Int. Ed., 2017, 56, 12117.
(a) W. Luo, J. Luo, V. V. Popik and M. S. Workentin, Bioconjugate
Chem., 2019, 30, 1140. (b) L. Cheng, X. Kang, D. Wang, Y. Gao, L.
Yi and Z. Xi, Org. Biomol. Chem., 2019, 17, 5675.
7
8
9
10 R. van Geel, G. J. M. Pruijn, F. L. van Delft and W. C. Boelens,
Bioconjugate Chem., 2012, 23, 392.
11 (a) F. Dolhem, M. J. Johansson, T. Antonsson and N. Kann, J. Comb.
Chem., 2007, 9, 477. (b) R. Veillard, E. Bernoud, I. Abdellah, J.-F.
Lohier, C. Alayrac and A.-C. Gaumont, Org. Biomol. Chem., 2014, 12,
3635. (c) M. Robert, J. Vallée, P. Majkut, D. Krause, M. Gerrits and
C. P. R. Hackenberger, Chem. Eur. J., 2015, 21, 970
12 (a) M.-A. Kasper, M. Glanz, A. Stengl, M. Penkert, S. Klenk, T. Sauer,
D. Schumacher, J. Helma, E. Krause, C. Cardoso, H. Leonhardt and C.
P. R. Hackenberger, Angew. Chem., Int. Ed., 2019, 58, 11625. (b) M.-
A. Kasper, M. Gerlach, A.F.L. Schneider, C. Groneberg, P. Ochtrop,
S. Boldt, D. Schumacher, J. Helma, H. Leonhardt, M. Christmann and
C. P. R. Hackenberger, ChemBioChem, 2020, 21, 113. (c) A. L.
Baumann, S. Schwagerus, K. Broi, K. Kemnitz-Hassanin, C. E. Stieger,
N. Trieloff, P. Schmieder and C. P. R. Hackenberger, J. Am. Chem.
Soc., 2020, 142, 9544.
13 (a) S. Yoshida, Y. Hatakeyama, K. Johmoto, H. Uekusa and T. Hosoya,
J. Am. Chem. Soc., 2014, 136, 13590. (b) S. Yoshida, T. Kuribara, H.
Ito, T. Meguro, Y. Nishiyama, F. Karaki, Y. Hatakeyama, Y. Koike, I.
Kii and T. Hosoya, Chem. Commun., 2019, 55, 3556. (c) K. Adachi, T.
Meguro, Y. Sakata, K. Igawa, K. Tomooka, T. Hosoya and S. Yoshida,
Chem. Commun., 2020, 56, 9823. (d) N. Makio, Y. Sakata, T. Kuribara,
K. Adachi, Y. Hatakeyama, T. Meguro, K. Igawa, K, Tomooka, T.
Hosoya and S. Yoshida, Chem. Commun., 2020, 56, 11449.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
(a) H. C. Kolb, M. G. Finn and K. B. Sharpless, Angew. Chem., Int.
Ed., 2001, 40, 2004. (b) C. S. McKay and M. G. Finn, Chem. Biol.,
2014, 21, 1075. (c) J. Lahann, Click Chemistry for Biotechnology and
Materials Science, John Wiley & Sons, West Sussex, 2009.
2
(a) C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057. (b) V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B.
Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596. (c) T. R. Chan, R.
Hilgraf, K. B. Sharpless and V. V. Fokin, Org. Lett., 2004, 6, 2853. (d)
X.-M. Liu, A. Thakur and D. Wang, Biomacromolecules, 2007, 8,
2653. (e) M. Meldal and C. W. Tornøe, Chem. Rev., 2008, 108, 2952.
(f) J. E. Hein and V. V. Fokin, Chem. Soc. Rev., 2010, 39, 1302.
(a) M. F. Debets, C. W. J. van der Doelen, F. P. J. T. Rutjes and F. L.
van Delft, ChemBioChem, 2010, 11, 1168. (b) J. C. Jewett and C. R.
Bertozzi, Chem. Soc. Rev., 2010, 39, 1272. (c) E. M. Sletten and C. R.
Bertozzi, Acc Chem Res., 2011, 44, 666. (d) S. Arumugam, S. V. Orski,
N. E. Mbua, C. McNitt, G.-J. Boons, J. Locklin and V. V. Popik, Pure
Appl. Chem., 2013, 85, 1499. (e) J. Dommerholt, F. P. J. T. Rutjes and
F. L. van Delft, Top. Curr. Chem., 2016, 374, 16.
(a) I. E. Valverde, A. F. Delmas and V. Aucagne, Tetrahedron, 2009,
65, 7597. (b) B. C. Sanders, F. Friscourt, P. A. Ledin, N. E. Mbua, S.
Arumugam, J. Guo, T. J. Boltje, V. V. Popik and G.-J. Boons, J. Am.
Chem. Soc., 2011, 133, 949. (c) J. Dommerholt, O. van Rooijen, A.
Borrmann, C. F. Guerra, F. M. Bickelhaupt and F. L. van Delft, Nat.
Commun., 2014, 5, 5378. (d) R. R. Ramsubhag and G. B. Dudley, Org.
Biomol. Chem., 2016, 14, 5028. (e) D. A. Sutton, S.-H. Yu, R. Steet
14 (a) S. Yoshida, A. Shiraishi, K. Kanno, T. Matsushita, K. Johmoto, H.
Uekusa and T. Hosoya, Sci. Rep., 2011, 1, 82. (b) S. Yoshida, J. Tanaka,
Y. Nishiyama, Y. Hazama, T. Matsushita and T. Hosoya, Chem.
Commun., 2018, 54, 13499.
3
4
15 E. Saxon and C. R. Bertozzi, Science, 2000, 287, 2007.
16 (a) A. R. Van Dyke, L. S. Etemad, M. J. Vessicchio, G. A. Naclerio
and V. Jedson, ChemBioChem, 2016, 17, 1602. (b) W. Luo, P. Gobbo,
P. N. Gunawardene and M. S. Workentin, Langmuir, 2017, 33, 1908.
17 R. Chinchilla and C. Nájera, Chem. Rev., 2007, 107, 874
18 M. F. Debets, S. S. van Berkel, S. Schoffelen, F. P. J. T. Rutjes, J. C.
M. van Hest, and F. L. van Delft, Chem. Commun., 2010, 46, 97.
4 | Chem. Commun., 20XX, 00, 1-4
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins