10.1002/chem.201901889
Chemistry - A European Journal
RESEARCH ARTICLE
in suspension by stirring at 600 rpm for several days with glass beads (250
mg) at 45 ºC. The change of ee value of the crystalline material was
monitored by HPLC using a chiral column, CHIRALPAK® IF-3 (eluent,
hexane:EtOH = 99:1). Finally, crystalline 2 (>95% ee) was obtained after
7 days.
References
[1]
V. I. Minkin, Chem. Rev., 2004, 104, 2751 –2776; G. Berkovic, V.
Krongauz and V. Weiss, Chem. Rev., 2000, 100, 1741 –1753; R.
Guglielmetti, in Photochromism: Molecules and Systems, ed. H. Durr and
H. Bouas-Laurent, Elsevier, Amsterdam, 2003, pp. 314–466; R. C.
Bertelson, in Organic Photochromic and Thermochromic Compounds,
vol. 1, Main Photochromic Families, ed. J. C. Crano and R. J. Gugliemetti,
Kluwer Academic Publishers, 2002, pp. 11–83; P. Klajn, Chem. Soc.
Rev., 2014, 43, 148-184.
Attrition-enhanced deracemization of 3. In a sealed tube (L = 200 mm, Φ
= 25 mm), solid spirooxazine 3 (100 mg) and methanol (0.5 mL) were kept
in suspension by stirring at 600 rpm for several days with glass beads (250
mg) at 35 or 55 ºC. The change of ee value of the crystalline material was
monitored by HPLC using a chiral column, CHIRALPAK® IE-3 (eluent,
hexane:EtOH = 99:1). Finally, crystalline 3 (99% ee) was obtained after 10
days at 35 ºC and after 6 days at 55 ºC.
[2]
S. Swansburg, E. Buncel, R. P. Lemieux, J. Am. Chem. Soc., 2000, 122,
6594-6600; Y. Sheng, J. Leszczynski, Struct. Chem., 2014, 25, 667–677;
S.-R. Keum, M.-J. Lee, S. Swansburg, E. Buncel, R. P. Lemieuxb, Dyes
& Pigments, 1998, 39, 383–388; Y. Sheng, J. Leszczynski, A. A. Garcia,
R. Rosario, D. Gust, J. Springer, J. Phys. Chem. B, 2004, 108, 16233-
16243; P. K. Kundu, A. Lerner, K. Kucanda, G. Leitus, R. Klajn, J. Am.
Chem. Soc., 2014, 136, 11276−11279.
Single crystal X-Ray structure analysis of (S)-8-bromo-6-chloro-1',3',3'-
trimethylspiro[chromene-2,2'-indoline] 1.
Colorless plate (0.20 x 0.20 x 0.02 mm3), Tetragonal space group P43, a =
8.1027(3) Å, b = 8.1027(3) Å, c = 26.6884(9) Å, V = 1752.19(14) Å3, Z = 4,
λ (CuKα) = 1.54178 Å, ρ = 1.481 g/cm3, µ (CuKα) = 4.620 mm-1, 2268
reflections measured (T = 173 K, 5.706 < θ < 67.944°) , nb of independent
data collected: 2268, nb of independent data used for refinement: 2086 in
the final least-squares refinement cycles on F2, the model converged at R1
= 0.0902, wR2 = 0.2457 [I>2s(I)], R1 = 0.0940, wR2 = 0.2515 (all data), and
GOF = 0.992, H-atom parameters constrained. Flack parameter = 0.06(2)
for (S)-configuration. (CCDC 1909684).
[3]
[4]
[5]
E. Havinga, Biochem. Biophys. Acta 1954, 13, 171–174; F. C. Frank,
Biochim. Biophys. Acta 1953, 11, 459–463.
J. Jacques, A. Collet, S. H. Wilen, in Enantiomers, Racemates and
Resolution; Krieger: FL, 1994
R. Yoshioka, Top. Curr. Chem., 2007, 269, 83–132; M. Sakamoto, T.
Mino, In Crystallization Processes, Mastai, Y. Ed., InTech, 2012, 59–80;
M. Sakamoto, T. Mino, in Advances in Organic Crystal Chemistry,
Comprehensive Reviews 2015, Eds. R. Tamura, M. Miyata, Springer,
2015, 445–462.
Single crystal X-Ray structure analysis of (S)-1,1,3-trimethyl-6'-nitro-1,3-
dihydrospiro[benzo[e]indole-2,2'-chromene] 2.
[6]
W. J. Boyle Jr, S. Sifniades, J. F. Van Peppen, J. Org. Chem., 1979, 44,
4841-4847; S. Yamada, C. Hongo, R. Yoshioka, I. Chibata, J. Org. Chem.
1983, 48, 843-846; W. L. Noorduin, A. A. C. Bode, M. van der Meiden,
H. Meekes, A. F. van Etteger, W. J. P. van Enckevort, P. C. M.
Christianen, B. Kaptein, R. M.Kellogg, T. Rasing, E. Vlieg, Nature Chem.
2009, 1, 729–732;
Colorless prismatic (0.20 x 0.20 x 0.05 mm3), orthorhombic space group
P212121, a = 11.1160(5) Å, b = 11.1998(4) Å, c = 15.3147(6) Å, V =
1906.63(13) Å3, Z = 4, λ (CuKα) = 1.54178 Å, ρ = 1.297 g/cm3, µ (CuKα)
= 0.700 mm-1, 7783 reflections measured (T = 173 K, 4.892 < θ < 68.233°) ,
nb of independent data collected: 3281, nb of independent data used for
refinement: 3211 in the final least-squares refinement cycles on F2, the
model converged at R1 = 0.0320, wR2 = 0.0875 [I>2s(I)], R1 = 0.0328, wR2
= 0.0883 (all data), and GOF = 1.062, H-atom parameters constrained.
Flack parameter = 0.15(6) for (S)-configuration. (CCDC 1909757).
[7]
[8]
P. J. Reider, P. Davis, D. L. Hughes, E. J. J. Grabowski, J. Org. Chem.
1987, 52, 955-957.
R. E. Pincock, R. R. Perkins, A. S. Ma, K. R. Wilson, Science 1971, 174,
1018–1020; D. K. Kondepudi, R. J. Kaufman, N. Singh, Science 1990,
250, 975–976; M. Sakamoto, N. Utsumi, M. Ando, M. Saeki, T. Mino, T.
Fujita, A. Katoh, T. Nishio, C. Kashima, Angew. Chem. Int. Ed. 2003, 42,
4360–4363.
Single crystal X-Ray structure analysis of (S)-1-(2-methoxyethyl)-3,3,5-
trimethylspiro[indoline-2,3'-naphtho[2,1-b][1,4]oxazine] 3.
[9]
F. Yagishita, H. Ishikawa, T. Onuki, S. Hachiya, T. Mino, M. Sakamoto,
Angew. Chem. Int. Ed. 2012, 51, 13023–13025.
Colorless plate (0.20 x 0.20 x 0.03 mm3), orthorhombic space group
P212121, a = 10.2021(6) Å, b = 10.8555(6) Å, c = 18.4907(11) Å, V =
2047.8(2) Å3, Z = 4, λ (CuKα) = 1.54178 Å, ρ = 1.254 g/cm3, µ (CuKα) =
0.629 mm-1, 8119 reflections measured (T = 173 K, 4.723 < θ < 68.198°) ,
nb of independent data collected: 3491, nb of independent data used for
refinement: 3470 in the final least-squares refinement cycles on F2, the
model converged at R1 = 0.0290, wR2 = 0.0785 [I>2s(I)], R1 = 0.0291, wR2
= 0.0786 (all data), and GOF = 1.042, H-atom parameters constrained.
Flack parameter = 0.13(5) for (S)-configuration. (CCDC 1909660).
[10] M. Sakamoto, K. Shiratsuki, N. Uemura, H. Ishikawa, Y. Yoshida, Y.
Kasashima, T. Mino, Chem. Eur. J., 2017, 23, 1717-1721.
[11] Synthesis and crystallography of 1. H. Guo, Y.-B. Gao, J. Han, J.-B.
Meng, Acta Cryst., 2005, E61, o1461–o1462
[12] Synthesis and crystallography of 2. S. M. Aldoshin, A. N. Chekhlov, L. O.
Atovmyan, Russ. Chem. Bull., 1986, 35, 519-522.
[13] Synthesis and crystallography of 3. Y. T. Osano, K. Mitsuhashi, S. Maeda,
T. Matsuzaki, Acta Cryst., 1991, C47, 2137–2141.
[14] C. Viedma, Phys. Rev. Lett. 2005, 94, 065504; (b) Coquerel, G. Chem.
Soc. Rev., 2014, 43, 2286-2300; L.-C. Sogutoglu, R R. E. Steendam, H.
Meekes, E. Vlieg, F. P. J. T. Rutjes, Chem. Soc. Rev. 2015, 44, 6723–
6732.
Acknowledgements
This work was supported by Grants-in-Aid for Scientific Research
(Nos. 17K19114 and 16H04144) from the Ministry of Education,
Culture, Sports, Science, and Technology (MEXT) of the
Japanese Government. Mr. Uemura acknowledges financial
support from Frontier Science Program of Graduate School of
Science and Engineering, Chiba University.
[15] W. L. Noorduin, T. Izumi, A. Millemaggi, M. Leeman, H. Meekes, W. J.
P. Van Enckevort, R. M. Kellogg, B. Kaptein, E. Vlieg, D. G. Blackmond,
J. Am. Chem. Soc., 2008, 130, 1158 –1159; C. Viedma, J. E. Ortiz, T. de
Torres, T. Izumi, D. G. Blackmond, J. Am. Chem. Soc. 2008, 130,
15274–15275; B. Kaptein, W. L. Noorduin, H. Meekes, W. J. P. van
Enckevort, R. M. Kellogg, E. Vlieg, Angew. Chem. Int. Ed. 2008, 47, 7226
–7229; Angew. Chem. 2008, 120, 7336–7339; R. R. E. Steendam, B.
Harmsen, H. Meekes, W. J. P. van Enckevort, B. Kaptein, R. M. Kellogg,
J. Raap, F. P. J. T. Rutjes, E. Vlieg, Cryst. Growth Des. 2013, 13, 4776–
4780; P. M. Bjçremark, J. Jçnsson, M. H. Hakansson, Chem. Eur. J. 2015,
21, 10630 –10633; Y. Kaji, N. Uemura, Y. Kasashima, H. Ishikawa, Y.
Yoshida, T. Mino, M. Sakamoto, Chem. Eur. J. 2016, 22, 16429–16432;
Keywords: chiral symmetry breaking • spiropyran • spirooxazine
• deracemization • dynamic crystallization
This article is protected by copyright. All rights reserved.