reset is thermally driven and thus it does not imply the
addition of chemicals and accumulation of byproducts.
The main limitation of this system in view of real applications
is the very slow thermal reset, which however could be
exploited to implement memory effects.12
This work was supported by the US National Science
Foundation
(CAREER
Award
CHE-0237578
and
CHE-0749840), the Swiss National Science Foundation, and,
in Italy, MIUR (PRIN 2006034123) and Universita di Bologna.
Notes and references
z The excitation spectra show that, as expected, the lowest excited
state (3MLCT) of these Os complexes is obtained with unit efficiency
regardless of the wavelength of the absorbed light.
1 Molecular Switches, ed. B. L. Feringa, Wiley-VCH, Weinheim,
2001.
Fig. 2 Near-infrared phosphorescence spectra (lexc ¼ 607 nm) of an
air equilibrated MeCN solution containing 8.4 mM Os21 and 18 mM
ME-H1 (a), and of the same solution after exhaustive irradiation at
400 nm (b) and successive re-equilibration for five days at r.t. (c). The
inset shows the O2 (1D) phosphorescence intensity at 1270 nm for a
solution containing Os21 (12 mM) and ME-H1 (24 mM) as a function
of the dose of light absorbed by the osmium complex at 450 nm. Note
that in this experiment the same wavelength is employed for both
irradiating the photoacid and exciting the Os species.
2 Photochromism: Molecules and Systems, ed. H. Durr and
H. Bouas-Laurent, Elsevier, Amsterdam, 2003.
¨
3 (a) F. M. Raymo and S. Giordani, Proc. Natl. Acad. Sci. U. S. A.,
2002, 99, 4941; (b) F. M. Raymo and M. Tomasulo, Chem.–Eur. J.,
2006, 12, 3186; (c) D. Gust, T. A. Moore and A. L. Moore, Chem.
´
Commun., 2006, 1169; (d) J. Andreasson, S. D. Straight,
T. A. Moore, A. L. Moore and D. Gust, J. Am. Chem. Soc.,
2008, 130, 11122.
4 See, e.g. A. Amunts, O. Drory and N. Nelson, Nature, 2007,
447, 58.
because light in this spectral range is not absorbed by
the photoacid. However, an interesting behaviour arises
if the solution is irradiated at a wavelength absorbed by both
the ME-H1 species and the osmium complexes. We chose
5 (a) V. Balzani, A. Credi and M. Venturi, Molecular Devices and
Machines—Concepts and Perspectives for the Nanoworld,
Wiley-VCH, Weinheim, 2nd edn, 2008; (b) R. Ballardini,
A. Credi, M. T. Gandolfi, F. Marchioni, S. Silvi and M. Venturi,
Photochem. Photobiol. Sci., 2007, 6, 345; (c) S. Sortino, Photochem.
Photobiol. Sci., 2008, 7, 919.
41
450 nm because at this wavelength Os21 and Os-H2 have
the same absorption coefficient.w In fact, starting from the
ME-H1/Os21 state, the NIR phosphorescence band of singlet
oxygen is initially observed, but it progressively fades out on
increasing the irradiation time (i.e., the dose of light absorbed
by the Os complex) because of the transformation of ME-H1
6 V. Balzani, A. Credi and M. Venturi, ChemSusChem, 2008, 1, 26,
and references therein.
7 D. Sud, T. B. Norsten and N. R. Branda, Angew. Chem., Int. Ed.,
2005, 44, 2019.
8 (a) V. Lemieux, M. D. Spantulescu, K. K. Baldridge and
N. R. Branda, Angew. Chem., Int. Ed., 2008, 47, 5034;
into SP and concomitant conversion of Os21 into the shorter-
(b) M. V. Peters, R. S. Stoll, A. Kuhn and S. Hecht, Angew.
Chem., Int. Ed., 2008, 47, 5968.
¨
41
lived Os-H2
species (Scheme 1). Therefore, the photo-
9 E. B. Caruso, E. Cicciarella and S. Sortino, Chem. Commun., 2007,
5028.
10 A. P. de Silva and S. Uchiyama, Nat. Nanotech., 2007, 2, 399.
11 E. R. Kay, D. A. Leigh and F. Zerbetto, Angew. Chem., Int. Ed.,
2007, 46, 72.
sensitised formation of O2 (1D) takes place at low doses of
light, whereas it becomes inefficient at high doses (Fig. 2,
inset). Such a behaviour could be useful for the design of
self-regulating systems20 for applications, e.g., in photodynamic
therapy.
12 F. M. Raymo, R. J. Alvarado, S. Giordani and M. A. Cejas, J. Am.
Chem. Soc., 2003, 125, 2361.
13 S. Silvi, A. Arduini, A. Pochini, A. Secchi, M. Tomasulo,
F. M. Raymo, M. Baroncini and A. Credi, J. Am. Chem. Soc.,
2007, 129, 13378.
14 S. Silvi, E. C. Constable, C. E. Housecroft, J. E. Beves,
E. L. Dunphy, M. Tomasulo, F. M. Raymo and A. Credi,
Chem.–Eur. J., 2009, 15, 178.
15 F. M. Raymo, S. Giordani, A. J. P. White and D. J. Williams,
J. Org. Chem., 2003, 68, 4158.
16 E. C. Constable, C. E. Housecroft, A. Cargill Thompson,
P. Passaniti, S. Silvi, M. Maestri and A. Credi, Inorg. Chim. Acta,
2007, 360, 1102.
17 P. P. Laine, S. Campagna and F. Loiseau, Coord. Chem. Rev.,
2008, 252, 2552.
18 F. Wilkinson, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref.
Data, 1993, 22, 113.
19 (a) Q. G. Mulazzani, H. Sun, M. Z. Hoffman, W. E. Ford and M.
A. J. Rodgers, J. Phys. Chem., 1994, 98, 1145; (b) C. Tanelian,
C. Wolff and M. Esch, J. Phys. Chem., 1996, 100, 6555;
(c) A. A. Abdel-Shafi, D. R. Worrall and A. Y. Ershov, Dalton
Trans., 2004, 30.
20 S. D. Straight, G. Kodis, Y. Terazono, M. Hambourger,
T. A. Moore, A. L. Moore and D. Gust, Nat. Nanotech., 2008,
3, 280.
In summary, the coupled operation of the acid–base
switchable complex Os21 and the photoacid system ME-H1/SP
has enabled us to devise a chemical ensemble in which a violet
light input controls (a) a photoluminescence output in the far
red spectral region, and (b) the photosensitised generation of
singlet oxygen—and associated NIR phosphorescence—with
self-regulating behaviour.
This molecular switching ensemble exhibits a number of
interesting features, namely: (i) it can process input and output
optical signals in the visible region; (ii) at the same time, a
near-UV light input can control a light output in the near IR,
thus bypassing the whole visible range; (iii) the outputs
correspond to wavelengths in a spectral region (far red/near
infrared) that is interesting, for instance, in communication
technology and diagnostics; (iv) the photoluminescence output
reading can be performed in a non-destructive manner; (v)
owing to its reversibility and stability, the system can be cycled
for several times without appreciable loss of signal, and (vi) the
ꢀc
This journal is The Royal Society of Chemistry 2009
1486 | Chem. Commun., 2009, 1484–1486