to the fact that the regioregular P3HT chains can organize
themselves into ordered structures in the pristine film.26 This
lamellar order is interrupted by the presence of the fullerene
molecules. In the case of PCBM, where the fullerene molecules
can easily move in the film at elevated temperatures, the
polymer chains can rearrange into their ordered structure and
the shape of the PL spectra shifts with longer heating periods
more and more from the disordered mixture PL in the unheated
films to the spectrum of pristine, ordered P3HT films.
In contrast to this the PL spectra of the P3HT–PCBG
films do not change shape with long heating periods. The
normalized PL of the film heated for 1 h exactly matches
the short-heated film. This shows that the PCBG fixes the
morphology of the film rapidly and does not allow any further
rearrangements in the film.
solar cell in future applications. The electrical stability of these
devices has to be achieved by improving the method of
crosslinking to minimize the incomplete reaction.
Acknowledgements
This work has been performed partially within the Christian
Doppler Society’s dedicated laboratory on plastic solar cells
co-funded by Konarka Corp. The TEM images were recorded
at the Technical Service Unit (TSE) of the Johannes Kepler
University.
References
1 Clean Electricity from Photovoltaics, ed. M. D. Archer, R. Hill,
Imperial College Press, London, 2001.
The IR studies show that PCBG can be polymerized with
significant amounts of initiator that are not suitable for
photovoltaic device operation. The epoxy ring absorption
features fully disappear showing the ring-opening polymeriza-
tion. Unfortunately the polymerization of PCBG is much less
efficient using small amounts of initiator and annealing. The
IR absorption spectra show significant amounts of epoxy rings
remaining even after 1 h of heat treatment at 140 uC.
2 Organic Photovoltaics: Concepts and Realization, ed. C. J. Brabec,
V. Dyakonov, J. Parisi, N. S. Sariciftci, Springer-Verlag, Berlin,
2003.
3 C. W. Tang, Appl. Phys. Lett., 1986, 48, 2, 183.
4 N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, Science,
1992, 258, 1474.
5 C. J. Brabec, G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati,
J. C. Hummelen and N. S. Sariciftci, Chem. Phys. Lett., 2001, 340,
3–4, 232.
6 G. Yu, J. Gao, J. C. Hummelen, F. Wudl and A. J. Heeger,
Science, 1995, 270, 1789.
Even though AFM, TEM and PL studies show that the
morphology of P3HT–PCBG blend films is very stable, the IR
absorption studies show that the PCBG molecules do not all
polymerize into a network. A significant amount of epoxy
rings still remains in the film. It is likely that during heat
treatment small amounts of PCBG polymerize to very short
oligomer chains but these short chains are already enough to
suppress diffusion, therefore explaining the discrepancy
between stable morphology and remaining epoxy rings.
While the morphology of the P3HT–PCBG blend films is
stabilized by the polymerization reaction, the electrical charac-
teristics of the solar cells built from this blend show an unusual
degradation during the heat treatment. The origin of this
degradation process is not known. It could be related to the
incomplete polymerization of PCBG molecules. The shape of
the current–voltage curve is typical for a barrier blocking the
charge transport which is usually formed near the electron
accepting electrode. It is interesting to note that the short
circuit current and the open circuit voltage remain unchanged
after the thermal treatment. This indicates that the active layer
is not degraded and the film morphology does not change.
Most likely the epoxy groups may react with the evaporated
metal atoms forming an insulating layer at the metal–active
layer interface.
7 S. E. Shaheen, C. J. Brabec, N. S. Saricftci, F. Padinger,
T. Fromherz and J. C. Hummelen, Appl. Phys. Lett., 2001, 78, 841.
8 L. Chen, D. Godovsky, O. Ingana¨s, J. C. Hummelen, R. A. J. Janssens,
M. Svensson and M. R. Andersson, Adv. Mater., 2000, 12, 18, 1367.
9 J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia,
R. H. Friend, S. C. Moratti and A. B. Holmes, Nature, 1995, 376,
6540, 498.
10 G. Yu and A. J. Heeger, J. Appl. Phys., 1995, 78, 7, 4510.
11 M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson
and R. H. Friend, Nature, 1998, 395, 257.
12 P. Peumans, A. Yakimov and S. R. Forrest, J. Appl. Phys., 2003,
93, 7, 3693.
13 B. Maennig, J. Drechsel, D. Gebeyehu, P. Simon, F. Kozlowski,
A. Werner, F. Li, S. Grundmann, S. Sonntag, M. Koch, K. Leo,
M. Pfeiffer, H. Hoppe, D. Meissner, N. S. Sariciftci, I. Riedel,
V. Dyakonov and J. Parisi, Appl. Phys. A: Solid Surf., 2004, 79, 1.
14 N. S. Sariciftci and A. J. Heeger, in Handbook of Conductive
Molecules and Polymers, John Wiley & Sons, New York, 1997,
vol. 1, ch. 8.
15 F. Padinger, R. S. Rittberger and N. S. Sariciftci, Adv. Funct.
Mater., 2003, 13, 2, 1.
16 J. J. M. Halls, K. Pichler, R. H. Friend, S. C. Moratti and
A. B. Holmes, Appl. Phys. Lett., 1996, 68, 3120.
17 D. Vacar, E. S. Maniloff, D. W. McBranch and A. J. Heeger, Phys.
Rev. B: Condens. Matter, 1997, 56, 4573.
18 H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen,
A. Hinsch, D. Meissner and N. S. Sariciftci, Adv. Funct. Mater.,
2004, 14, 1005.
19 X. Yang, J. K. J. Van Duren, R. A. J. Janssen, M. A. J. Michels
and J. Loos, Macromolecules, 2004, 37, 2151.
20 A. Cravino, G. Zerza, M. Maggini, S. Bucella, M. Svensson,
M. R. Andersson, H. Neugebauer and N. S. Sariciftci, Chem.
Commun., 2000, 2487.
Conclusions
The morphological stabilization of the bulk heterojunction
solar cells can be achieved by cross linking of the small
molecular phase using a polymerizable fullerene derivative. As
demonstrated by comparative nanomorphology studies using
combined AFM, TEM and photoluminescence experiments
this approach gives considerable stabilization of the solid state
morphology. Such prevention of the long term, high tempera-
ture instability of bulk heterojunction morphology displays an
important route to increase the operational stability of plastic
21 A. M. Ramos, M. T. Rispens, J. K. J. van Duren, J. C. Hummelen
and R. A. J. Janssen, J. Am. Chem. Soc., 2001, 123, 27, 6714.
22 M. G. Nava, S. Setayesh, A. Rameau, P. Masson and
J. F. Nierengarten, New J. Chem., 2002, 11, 1584.
23 J. C. Hummelen, B. W. Knight, F. LePeq, F. Wudl, J. Yao and
C. L. Wilkins, J. Org. Chem., 1995, 60, 532.
24 M. Miyamoto, Y. Saeki, C. W. Lee, Y. Kimura, H. Maeda and
K. Tsutsui, Macromolecules, 1997, 30, 6067.
25 P. Peumans, S. Uchida and S. R. Forrest, Nature, 2003, 425, 158.
26 T. A. Chen, X. Wu and R. D. Rieke, J. Am. Chem. Soc., 1995, 117,
233.
This journal is ß The Royal Society of Chemistry 2005
J. Mater. Chem., 2005, 15, 5158–5163 | 5163