Page 7 of 9
New Journal of Chemistry
Please do not adjust margins
Journal Name
ARTICLE
1
2
3
4
5
6
7
8
9
and S. Blechert, Angew. Chem. Int. Ed.,D2O0I1: 110,.15003,96/C597N–J606509.97K
D. J. C Constable, A. D Curzons and V. L. Cunningham, Green
Chem., 2002, 4, 521–527.
(a) S. Furukawa, A. Suga and T. Komatsu, Chem. Commun.,
2014, 50, 3277–3280. (b) M. T. Schumperli, C. Hammond and
I. Hermans, ACS Catal., 2012, 2, 1108–1117.
R. A. Sheldon and J. K. Kochi, Academic Press. New York, 1981.
L. P. He, T. Chen, D. Gong, Z. Lai and K. W Huang,
Organometallics., 2012, 31, 5208–5211.
R. I. Khusnutdinov, A. R. Baygusina and R. I. Aminov, Russian.
J. Org. Chem., 2012, 48, 1059–1061.
For large scale production we have adopted the following
experimental procedure; briefly, a mixture of benzylamine (30
mmol; 3.214 g) and Cu-BTC MOF (~ 0.214 g) was placed in a 50
mL round two necked - bottomed flask. The Inlet was connected
to an oxygen cylinder through the mass flow controller (MFC)
and the outlet was connected to a condenser followed by a glass
trap. Then the O2 gas was continuously supplied at a flow rate
of 50 mL/min, which is represented in a Fig. S6 and cross
checked the outlet flow using a bubble meter. The reaction
mixture contained flask was kept on the magnetic stirrer at a
temperature of 80 °C for 12 h. After completion of the reaction,
the catalyst was separated by centrifugation and concentrated
the mixture under vacuum rotary evaporator. Then the desired
product N-benzylidenebenzylamine was isolated by column
chromatography by using silica gel with eluting solvents. The
obtained yield is found to be around 94% (3.010 g). The same
procedure was followed for further up scaling of the reaction by
taking the benzylamine in 100 mmol (10.715 g) and Cu-BTC MOF
of about 0.714 g that showed around 92% yield (9.850 g). These
results thus emphasized the robust nature of the catalyst for
aerobic oxidation reaction at moderately large scale operations.
5
6
7
8
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
9
10 S. Zhao, C. Liu, Y. Guo, J. C. Xiao and Q. Y. Chen, J Org Chem.,
2014, 79, 8926–8931.
11 K. Nakayama, M. Hamamot, Y. Nishiyama and Y. Ishii, Chem
Lett., 1993, 22, 1699–1702.
12 S. Kodama, J. Yoshida, A. Nomoto, Y. Ueta, S. Yano, M.
Ueshima and A. Ogawa, Tetrahedron Lett., 2010, 51, 2450–
2452.
13 H. Naeimi, F. Salimi and K. Rabiei, J. Mol. Catal. A: Chem.,
2006, 260, 100–104.
14 (a) R. J. Angelici, Catal. Sci. Technol., 2013, 3, 279–296. (b) X.
Jin, Y. Liu, Q. Lu, D. Yang, J. Sun, S. Qin, J. Zhang, J. Shen, C. Chu
and R. Liu,. Org. Biomol. Chem., 2013, 11, 3776–3780.
15 K. Mori, K. Yamaguchi, T. Mizugaki, K. Ebitan and K. Kaneda,
Chem. Commun., 2001, 461–462.
16 K. Yamaguchi and N.Mizuno, Angew. Chem., Int. Ed., 2003, 42,
1480–1483.
17 L. Aschwanden, T. Mallat, F. Krumeich and A. Baiker, J. Mol.
Catal. A: Chem., 2009, 309, 57–62.
18 A. Grirrane, A. Corma and H. Garcia, J. Catal., 2009, 264, 138–
144.
19 M. H. So, Y. G. Liu, C. M. Ho and C. M. Che, Chem. Asian J.,
2009, 4, 1551–1561.
20 (a) X. F. Wu, C. B. Bheeter, H. Neumann, P. H. Dixneuf and M.
Beller, Chem. Commun., 2012, 48, 12237–12239. (b) S.
Ahmad, K. Gopalaiah, S. N. Chandrudu, R. Nagarajan, Inorg.
Chem,. 2014, 53, 2030–2039. (c) R. D. Patil and S. Adimurthy,
RSC Adv., 2012, 2, 5119–5122.
21 (a) S. E. Miller, M. H. Teplensky, P. Z. Moghadam and D. F.
Jimenez, Interface Focus., 2016, 6, 20160027. (b) S. Ma and H.
C. Zhou, Chem. Commun., 2010, 46, 44–53. (c) P. Horcajada,
R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey,
R. E. Morris and C. Serre, Chem. Rev., 2012, 112, 1232–1268.
(d) L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van
Duyne and J. T. Hupp, Chem. Rev., 2012, 112, 1105–1125. (e)
Z. Hu, B. J. Deibert and J. Li, Chem. Soc. Rev., 2014, 43, 5815–
5840.
22 (a) A. Corma, H. Garcia and F. X. L. I Xamena,. Chem. Rev.,
2010, 110, 4606–4655. (b) J. Liu, L. Chen, H. Cui, J. Zhang, L.
Zhang and C.Y. Su, Chem. Soc. Rev., 2014, 43, 6011–6061. (c)
M. Yoon, R. Srirambalaji and K. Kim, Chem. Rev., 2012, 112,
1196–1231.
4 Conclusions
In summary, the Cu-BTC MOF has been identified as novel
heterogeneous catalyst for imine formation under mild reaction
conditions. This method involves O2 as an environmentally
friendly oxidant at 80 °C without solvent and the Cu-BTC MOF
can be reused up to five cyclic experiments that showed
consistent catalytic activity. In addition, the Cu-BTC MOF
catalyst could demonstrate excellent yield of desired product at
moderately large-scale experiments. The synthesized imine
intermediates are important for the synthesis of various
biological active compounds. The Lewis acid sites present on the
Cu-BTC MOF catalyst played a key role for the enhanced imines
yields in the conversion of primary amines under aerobic
oxidative conditions.
Acknowledgements
All the authors thank DST New Delhi for funding under India-
Poland bilateral program.
CSIR – IICT Communication number: IICT/Pubs./2019/189.
23 B. Huang, H. Tian, S. Lin, M. Xie, X. Yu and Q. Xu, Tetrahedron
Lett., 2013, 54, 2861–2864.
References
1
D. J. H Litina and A. A. Geronikaki, Drug Des. Discov., 1998, 15, 24 Z. Hu and F. M. Kerton, Org Biomol Chem., 2012, 10, 1618–
199–206.
1624.
2
3
R. W. Layer, Chem. Rev., 1963, 63, 489–510.
(a) B. Gnanaprakasam, J. Zhang and D. Milstein, Angew. Chem.
25 D. Britt, D. Tranchemontagne and O. M. Yaghi, PNAS., 2008,
33, 11623–11627.
Int. Ed., 2010, 49, 1468–1471. (b) C. G. Arellano, K. Yoshida, R. 26 (a) K. A. Nolin, R. W. Ahn and F. D. Toste, J. Am. Chem. Soc.,
Luque and P. L. Gai, Green Chem., 2010, 12, 1281–1287.
(a) G. Chu and C. Li, Org. Biomol. Chem., 2010, 8, 4716–4719.
2005, 127, 12462–12463. (b) T. C. Nugent, Wiley–VCH,
Weinheim, Germany, (2010) p. 22.
4
(b) A. H. Ell, J. S. M. Samec, C. Brasse and J. E. Backvall, Chem. 27 L. F. Chen, P. J. Guo, M. H. Qiao, S. R. Yan, H. X. Li, W. Shen, H.
Commun., 2002, 10, 1144–1145. (c) X. Lang, H. Ji, C. Chen, W.
L. Xu and K. N. Fan, J. Catal., 2008, 257, 172–180.
Ma and J. Zhao, Angew. Chem. Int. Ed., 2011, 50, 3934–3937. 28 C. A. Pires, A. C. C. D. Santos and E. Jordão, Braz. J. Chem. Eng.,
(d) S. Furukawa, Y. Ohno, T. Shishido, K. Teramura and T.
Tanaka, ACS Catal., 2011, 1, 1150–1153. (e) L. Liu, S. Zhang, X.
2015, 32, 837–848.
Please do not adjust margins