Pd-catalyzed desulfitative Hiyama coupling with sulfonyl chlorides
Table 3. Pd-catalyzed desulfitative Hiyama coupling with sulfonyl
chloridesa
Entry
R1
4-OMe
R2
Yield (%)b
1
H
90
91
86
78
81
89
83
80
74
90
76
92
87
83
86
79
82
88
77
83
71
Figure 2. Possible mechanism.
2
4-CH3
H
3
4-t-Bu
H
4
4-COMe
H
Conclusion
5
4-NO2
H
H
6
4-Cl
We disclose here the first cross-coupling of arylsulfonyl chloride
with aryltrimethoxysilane to afford biaryl products. The Pd(0)-
catalyzed Hiyama-type reaction proceeded smoothly in DMF/
CH3CN under N2. This transformation was efficient via desulfitative
course with the assistance of TBAF.3H2O.
7
4-Br
H
8
3-OMe
H
9
2-OMe
H
10
11
12
13
14
15
16
17
18
19
20
21
2-Naphthyl
H
1-Naphthyl
H
H
H
H
H
H
H
H
H
H
H
4-OMe
4-CH3
4-t-Bu
4-Cl
References
[1] R. T. Morrison, R. N. Boyd, Organic Chemistry, 5th edn, A. Bacon,
Boston, MA, 1987.
[2] Kirk-Othmer Concise Encyclopedia of Chemical Technology,
Wiley-VCH, New York, 1985.
[3] A. Kasahara, T. Izumi, N. Kudou, H. Azami, S. Yamamato, Chem. Ind.
1988, 51.
[4] A. Kasahara, T. Izumi, K. Miyamoto, T. Sakai, Chem. Ind. 1989, 192.
[5] M. Miura, H. Hashimoto, K. Itoh, M. Nomura, Tetrahedron Lett. 1989,
30, 975.
[6] M. Miura, H. Hashimoto, K. Itoh, M. Nomura, J. Chem. Soc. Perkin
Trans.1 1990, 8, 2207.
[7] For review of arylsulfonyl chloride in Pd-catalyzed cross-coupling, see
S. R. Dubbaka, P. Vogel, Angew. Chem. Int. Ed. 2005, 44, 7674.
[8] S. R. Dubbaka, P. Vogel, Tetrahedron Lett. 2006, 47, 3345.
[9] S. R. Dubbaka, P. Vogel, J. Am. Chem. Soc. 2003, 125, 15292.
[10] S. R. Dubbaka, P. Steunenberg, P. Vogel, Synlett 2004, 1235.
[11] S. S. Labadie, J. Org. Chem. 1989, 54, 2496.
4-Br
4-NO2
3-OMe
2-OMe
2-Naphthyl
1-Naphthyl
aReaction conditions: arylsulfonyl chloride (0.5 mmol), aryltriethoxysilane
(0.5 mmol), Pd2(dba)3 (3 mol%), TBAF.3H2O (0.5mmol), DMF/CH3CN
(1:4) (1.0 ml) at 100°C for 3 h under N2 unless otherwise indicated.
bIsolated cross-coupling yield; v/v ratio of solvents is shown
in parentheses.
[12] S. R. Dubbaka, P. Vogel, Org. Lett. 2004, 6, 95.
[13] S. R. Dubbaka, P. Vogel, Chem. Eur. J. 2005, 11, 2633.
[14] S. R. Dubbaka, P. Vogel, Adv. Synth. Catal. 2004, 346, 1793.
[15] V. P. W. Bohm, W. A. Herrmann, Eur. J. Org. Chem. 2000, 3679.
[16] A. Soheili, J. Albaneze-Walker, J. A. Murry, P. G. Dormer, D. L. Hughes,
Org. Lett. 2003, 5, 4191.
[17] T. Kashiwabara, M. Tanaka, Tetrahedron Lett. 2005, 46, 7125.
[18] M. Miura, H. Hashimoto, K. Itoh, M. Nomura, Chem. Lett. 1990, 459.
[19] M. Miura, K. Itoh, M. Nomura, Chem. Lett. 1989, 77.
[20] S. E. Denmark, M. H. Ober, Aldrichim. Acta 2003, 36, 76.
[21] S. E. Denmark, J. H.-C. Liu, Angew. Chem. Int. Ed. 2010, 49, 2.
[22] S. E. Denmark, C. S. Regens, Acc. Chem. Res. 2008, 41, 1486.
[23] Y. Nakao, T. Hiyama, Chem. Soc. Rev. 2011, 40, 4893.
[24] R. G. Franzen, Tetrahedron 2000, 56, 685.
[25] E. C. Ashby, J. Laemmle, H. M. Neumann, Acc. Chem. Res. 1974,
7, 272.
[26] H. E. Elsayed-Ali, E. Waldbusser, US Patent 200400767552004.
[27] E. R. Boller, US Patent 35089131970.
[28] K. Cheng, S. Hu, B. Zhao, X. M. Zhang, C. Qi, J. Org. Chem. 2013,
78, 5022.
However, the site-diverse groups on the phenyl ring of arylsilane
would slightly decrease the reaction efficiency (Table 3, entries
8 and 9). After a broad scope of arylsulfonyl chloride was
established, we were particularly interested in extending the
arylation to arylsilane derivatives. 4- Methoxy, 4-chloro, 4-bromo,
4-nitro and 4-tert-butyl could be coupled with good effi-
ciency (Table 3, entries 12–17). Importantly, naphthalene
groups were also applicable to these reaction conditions in
moderate to good yield, no matter whether naphthalene-
sulfonyl chloride or trimethoxy(naphthalen-2-yl)silane (Table 3,
entries 10, 11, 20, 21).
A plausible mechanism is outlined in Fig. 2. Step (i) involves
the oxidative addition of arylsulfonyl chloride to the Pd(0)
forms the Pd(II) intermediate A. In step (ii), the intermediate
A produces intermediate B with concomitant loss of SO2 in
the presence of palladium catalysts at a higher temperature,
the exchange of arylsilane with intermediate B in step (iii) to
afford intermediate C by the assistance of TBAF and, in step Supporting Information
(iv), the reductive elimination from the Pd(II) complex affords
the biaryl and regenerates Pd(0).
Additional supporting information may be found in the online
version of this article at the publisher's web-site.
Appl. Organometal. Chem. 2014, 28, 379–381
Copyright © 2014 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/aoc