Chemistry - A European Journal
10.1002/chem.202003937
COMMUNICATION
2014, 43, 3551–3574; e) A. Pöthig, A. Casini, Theranostics 2019, 9, 3150–
3169.
3
a) M. Fujita, Chem. Soc. Rev. 1998, 27, 417–425; b) M. M. J. Smulders, I.
A. Riddell, C. Browne, J. R. Nitschke, Chem. Soc. Rev. 2013, 42, 1728–
1754; c) V. Martínez-Agramunt, D. G. Gusev, E. Peris, Chem. Eur. J. 2018,
24, 14802–14807.
4
5
J. M. Lehn, A. Rigault, J. Siegel, J. Harrowfield, B. Chevrier, D. Moras,
Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 2565–2569.
a) R. D. Hancock, Chem. Soc. Rev. 2013, 42, 1500–1524; b) M. Fujita, K.
Umemoto, M. Yoshizawa, N. Fujita, T. Kusukawa, K. Biradha, Chem.
Commun. 2001, 509–518; c) J. Taesch, V. Heitz, F. Topić, K. Rissanen,
Chem. Commun. 2012, 48, 5118–5120; d) S. Hiraoka, T. Tanaka, M.
Shionoya, J. Am. Chem. Soc. 2006, 128, 13038–13039; e) T. K. Ronson,
H. Nowell, A. Westcott, M. J. Hardie, Chem. Commun. 2011, 47, 176–178;
f) Y. Lu, H. N. Zhang, G. X. Jin, Acc. Chem. Res. 2018, 51, 2148−2158; g)
W. X. Gao, H. N. Zhang, G. X. Jin, Coord. Chem. Rev. 2019, 386, 69-84.
a) J. L. Boyer, M. L. Kuhlman, T. B. Rauchfuss, Acc. Chem. Res. 2007, 40,
6
7
8
233–242; b) Y. Yamamotoa, H. Suzuki, N. Tajima, K. Tatsumi, Chem. Eur.
J. 2002, 8, 372–379; c) S.-W. Lai, K.-K. Cheung, M. C.-W. Chan, C.-M.
Che, Angew. Chem. Int. Ed. 1998, 37, 182–184.
a) M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 2014, 510,
485–496; b) F. E. Hahn, M. C. Jahnke, Angew. Chem. Int. Ed. 2008, 47,
3122–3172; c) D. Bourissou, O. Guerret, F. P. Gabbaï, G. Bertrand, Chem.
Rev. 2000, 100, 39–91.
a) F. E. Hahn, C. Radloff, T. Pape, A. Hepp, Chem. Eur. J. 2008, 14,
10900–10904; b) A. Rit, T. Pape, F. E. Hahn, J. Am. Chem. Soc. 2010,
132, 4572–4573; c) N. Sinha, F. E. Hahn, Acc. Chem. Res. 2017, 50, 2167–
2184 and references cited therein; d) S. Gonell, M. Poyatos, J. A. Mata, E.
Peris, Organometallics 2011, 30, 5985–5990.
9
For selected references, see: a) L. Y. Sun, N. Sinha, T. Yan, Y. S. Wang,
T. T. Y. Tan, L. Yu, Y. F. Han, F. E. Hahn, Angew. Chem. Int. Ed. 2018, 57,
5161–5165; b) C. Mejuto, G. Guisado-Barrios, D. Gusev, E. Peris, Chem.
Commun. 2015, 51, 13914–13917; c) A. Rit, T. Pape, A. Hepp, F. E. Hahn,
Organometallics 2011, 30, 334–347; d) M. M. Gan, J. Q. Liu, L. Zhang, Y.
Y. Wang, F. E. Hahn, Y. F. Han, Chem. Rev. 2018, 118, 9587–9641; e) S.
Ibáñez, M. Poyatos, E. Peris, Acc. Chem. Res. 2020, 53, 1401–1413.
a) H. M. J. Wang, I. J. B. Lin, Organometallics 1998, 17, 972–975; b) J. C.
Garrison, W. J. Youngs, Chem. Rev. 2005, 105, 3978–4008.
1
0
1
1
For selected reviews, see: a) J. C. Y. Lin, R. T. W. Huang, C. S. Lee, A.
Bhattacharyya, W. S. Hwang, I. J. B. Lin, Chem. Rev. 2009, 109, 3561–
3598; b) Y. A. Wanniarachchi, M. A. Khan, L. M. Slaughter,
Organometallics 2004, 23, 5881–5884.
1
2
3
a) C. Segarra, G. Guisado-Barrios, F. E. Hahn, E. Peris, Organometallics
2014, 33, 5077–5080; b) N. Sinha, F. Roelfes, A. Hepp, C. Mejuto, E. Peris,
F. E. Hahn, Organometallics 2014, 33, 6898–6904; c) D. Wang, B. Zhang,
C. He, P. Wu, C. Duan, Chem. Commun. 2010, 46, 4728–4730.
a) A. Rit, T. Pape, F. E. Hahn, Organometallics 2011, 30, 6393–6401; b) L.
Zhang, R. Das, C. T. Li, Y. Y. Wang, F. E. Hahn, K. Hua, L. Y. Sun, Y. F.
Han, Angew. Chem. Int. Ed. 2019, 58, 13360–13364; c) P. J. Altmann, A.
Pöthig, J. Am. Chem. Soc. 2016, 138, 13171–13174; d) P. J. Altmann, A.
Pöthig, Angew. Chem. Int. Ed. 2017, 56, 15733–15736.
1
1
1
4
5
F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954–6971.
P. O. Asekunowo, R. A. Haque, M. R. Razali, S. Budagumpi, Appl.
Organomet. Chem. 2015, 29, 126–137.
16
a) R. Modak, B. Mondal, P. Howlader, P. S. Mukherjee, Chem. Commun.
2019, 55, 6711–6714; b) C. Rose, A. Lebrun, S. Clément, S. Richeter,
Chem. Commun. 2018, 54, 9603–9606; c) F. Al-Shnani, G. Guisado-
Barrios, D. Sainz, E. Peris, Organometallics 2019, 38, 697–701.
Y. Li, Y. Y. An, J. Z. Fan, X. X. Liu, X. Li, F. E. Hahn, Y. Y. Wang, Y. F.
Han, Angew. Chem. Int. Ed. 2020, 59, 10073–10080.
a) H. Schmidbaur, A. Schier, Angew. Chem. Int. Ed. 2014, 53, 2–41; b) B.
Jana, P. Ghosh, New J. Chem. 2017, 41, 2131–2139; c) X. Liu, G. C. Guo,
M. L. Fu, X. H. Liu, M. S. Wang, J. S. Huang, Inorg. Chem. 2006, 45, 3679–
1
7
8
1
3
685; d) This difference in Ag-Ag interactions also leads to the lower
centroid to centroid (of the benzimidazole phenyl ring) separations in 4
4.742 Å) than in 5 (4.886 Å).
(
1
9
0
For selected references, see: a) A. R. Chianese, X. Li, M. C. Janzen, J. W.
Faller, R. H. Crabtree, Organometallics 2003, 22, 1663–1667; b) R. E.
Andrew, C. M. Storey, A. B. Chaplin, Dalton Trans. 2016, 45, 8937–8944.
a) H. Schmidbaur, A. Schier, Chem. Soc. Rev. 2012, 41, 370–412; b) M. J.
Katz, K. Sakai, D. B. Lenzoff, Chem. Soc. Rev. 2008, 37, 1884–1895; c) L.
Ray, M. M. Shaikh, P. Ghosh, Inorg. Chem. 2008, 47, 230–240.
2
2
1
2
H. M. J. Wang, Y. L. Charle, I. J. B. Lin, Organometallics 1999, 18, 1216–
1223.
2
a) B. N. Ahamed, R. Dutta, P. Ghosh, Inorg. Chem. 2013, 52, 4269–4276;
b) J. Rieb, B. Dominelli, D. Mayer, C. Jandl, J. Drechsel, W. Heydenreuter,
S. A. Sieber, F. E. Kühn, Dalton Trans. 2017, 46, 2722–2735.
2
3
4
For selected references, see: a) Q. F. Sun, J. Iwasa, D. Ogawa, Y. Ishido,
S. Sato, T. Ozeki, Y. Sei, K. Yamaguchi, M. Fujita, Science 2010, 328,
1144–1147; b) P. S. Pregosin, P. G. Anil Kumar, I. Fernández, Chem. Rev.
2005, 105, 2977–2998.
2
Stability of the complex 8 is also supported by the calculated HOMO-LUMO
-
1
-1
gap of 414 kJ mol which is similar to that observed for 5 (408 kJ mol ,
Figure S40).
5
This article is protected by copyright. All rights reserved.