Journal of Chemical & Engineering Data
Article
trifluoromethanesulfonate. J. Chem. Eng. Data 2007, 52, 141−
147.
(15) Mokhtarani, B.; Gmehling, J. (Vapour + liquid) equilibria of
ternary systems with ionic liquids using headspace gas chromatog-
raphy. J. Chem. Thermodyn. 2010, 42, 1036−1038.
relative deviation values were also presented. It was found that
the excess molar volumes of N4AC + alkanol binary mixtures
were negative, and their absolute values increased slightly with
temperature and decreased with increasing the alcohol chain
length. Meanwhile, the refractive index deviations have positive
deviations from ideal solution and also decreased with
increasing the alcohol chain length. When the mole fraction
of N4AC near x1 = 0.3, both VE and ΔnD of N4AC + alkanol
binary mixtures have extreme points. The viscosity deviations of
the studied binary mixtures have negative deviations, and their
absolute values decreased sharply as increasing the temperature,
with the minima lying nearly at x1 = 0.7.
(16) Huang, J.; Luo, H.; Liang, C.; Jiang, D.; Dai, S. Advanced liquid
membranes based on novel ionic liquids for selective separation of
olefin/parafrin via olefin-facilitated transport. Ind. Eng. Chem. Res.
2008, 47, 881−888.
(17) Mahurin, S. M.; Lee, J. S.; Baker, G. A.; Luo, H. M.; Dai, S.
Performance of nitrile-containing anions in task-specific ionic liquids
for improved CO2/N2 separation. J. Membr. Sci. 2010, 353, 177−183.
́
(18) Gomez, E.; Dominguez, I.; Calvar, N.; Domínguez, A.
Separation of benzene from alkanes by solvent extraction with 1-
ethylpyridinium ethylsulfate ionic liquid. J. Chem. Thermodyn. 2010,
42, 1234−1239.
(19) Li, W.; Zhang, Z.; Han, B.; Hu, S.; Xie, Y.; Yang, G. Effect of
water and organic solvents on the ionic dissociation of ionic liquids.
J. Phys. Chem. B 2007, 111, 6452−6456.
AUTHOR INFORMATION
■
Corresponding Author
Funding
(20) Fan, W.; Zhou, Q.; Sun, J.; Zhang, S. Density, excess molar
volume, and viscosity for the methyl methacrylate + 1-butyl-3-
methylimidazolium hexafluorophosphate ionic liquid binary system at
atmospheric pressure. J. Chem. Eng. Data 2009, 54, 2307−2311.
(21) Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi,
M.; Sadeghian, F. Densities and viscosities of pure 1-methyl-3-
octylimidazolium nitrate and its binary mixtures with alcohols at
several temperatures. J. Chem. Eng. Data 2010, 55, 3901−3908.
(22) Fan, W.; Zhou, Q.; Zhang, S.; Yan, R. Excess molar volume and
viscosity deviation for the methanol + methyl methacrylate binary
system at T = (283.15 to 333.15) K. J. Chem. Eng. Data 2008, 53,
1836−1840.
(23) Zhang, S.; Li, M.; Chen, H.; Wang, J.; Zhang, J.; Zhang, M.
Determination of physical properties for the binary system of 1-ethyl-
3-methylimidazolium tetrafluoroborate + H2O. J. Chem. Eng. Data
2004, 49, 760−764.
(24) Mokhtarani, B.; Mojtahedi, M. M.; Mortaheb, H. R.; Mafi, M.;
Yazdani, F.; Sadeghian, F. Densities, refractive indices, and viscosities
of the ionic liquids 1-methyl-3-octylimidazolium tetrafluoroborate and
1-methyl-3-butylimidazolium perchlorate and their binary mixtures
with ethanol at several temperatures. J. Chem. Eng. Data 2008, 53,
677−682.
This research was supported financially by the National Natural
Science Foundation of Zhejiang Province (No. Y4090453) and
the National Science Foundation of China (Nos. 20773109 and
20704035).
REFERENCES
■
(1) Welton, T. Room-temperature ionic liquids. Solvents for
synthesis and catalysis. Chem. Rev. 1999, 99, 2071−2083.
(2) Lee, J. S.; Mayes, R. T.; Luo, H. M.; Dai, S. Ionothermal
carbonization of sugars in a protic ionic liquid under ambient
conditions. Carbon 2010, 48, 3364−3368.
(3) Guan, W.; Wang, C.; Yun, X.; Hu, X.; Wang, Y.; Li, H. A mild and
efficient oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoqui-
none in ionic liquids. Catal. Commun. 2008, 9, 1979−1981.
(4) Wang, C.; Guan, W.; Xie, P.; Yun, X.; Li, H.; Hu, X.; Wang, Y.
Effects of ionic liquids on the oxidation of 2,3,6-trimethylphenol to
trimethyl-1,4-benzoquinone under atmospheric oxygen. Catal. Com-
mun. 2009, 10, 725−727.
(5) Wang, Y.; Li, H.; Wang, C.; Jiang, H. Ionic liquids as catalytic
green solvents for cracking reactions. Chem. Commun. 2004, 17,
1938−1939.
(25) Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi,
M.; Sadeghian, F. Density and viscosity of 1-butyl-3-methylimidazo-
lium nitrate with ethanol, 1-propanol, or 1-butanol at several
temperatures. J. Chem. Thermodyn. 2009, 41, 1432−1438.
(26) Wang, J. J.; Tian, Y.; Zhao, Y.; Zhuo, K. A volumetric and
viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium
tetrafluoroborate ionic liquid with acetonitrile, dichloromethane,
2-butanone and N,N-dimethylformamide. Green Chem. 2003, 5,
618−622.
(6) Wasserscheid, P.; Keim, W. Ionic liquids - New “solutions” for
transition metal catalysis. Angew. Chem., Int. Ed. 2000, 39, 3772−3789.
(7) Xu, X.; Wang, C.; Li, H.; Wang, Y.; Sun, W.; Shen, Z. Effects of
imidazolium salts as cocatalysts on the copolymerization of CO2 with
epoxides catalyzed by (salen)(CrCl)-Cl-III complex. Polymer 2007, 48,
3921−3924.
(8) Wang, C.; Luo, H.; Jiang, D.; Li, H.; Dai, S. Carbon dioxide
capture by superbase-derived protic ionic liquids. Angew. Chem., Int.
Ed. 2010, 49, 5978−5981.
(27) Rebelo, L. P. N; Najdanovic-Visak, V.; Visak, Z. P.; da Ponte, M.
N.; Szydlowski, J.; Cerdeirina, C. A.; Troncoso, J.; Romani, L.;
Esperanca, J. M. S. S.; Guedes, H. J. R.; de Sousa, H. C. A detailed
thermodynamic analysis of [C(4)mim][BF4] + water as a case study to
model ionic liquid aqueous solutions. Green Chem. 2004, 6, 369−6381.
(28) Mohammed, T. Z.; Hemaya, S. Volumetric and Speed of Sound
of Ionic Liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate
with acetonitrile and methanol at T = (298.15 to 318.15) K. J. Chem.
Eng. Data 2005, 50, 1694−1699.
(29) Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi,
M.; Sadeghian, F. Density and viscosity of pyridinium-based ionic
liquids and their binary mixtures with water at several temperatures.
J. Chem. Thermodyn. 2009, 41, 323−329.
(9) Wang, C.; Mahurin, S. M.; Luo, H.; Baker, G. A.; Li, H. R.; Dai, S.
Reversible and robust CO2 capture by equimolar task-specific ionic
liquid-superbase mixtures. Green Chem. 2010, 12, 870−874.
(10) Wang, C.; Luo, H.; Luo, X.; Li, H.; Dai, S. Equimolar CO2
capture by imidazolium-based ionic liquids and superbase systems.
Green Chem. 2010, 12, 2019−2023.
(11) Huang, J.; Baker, G. A.; Luo, H.; Hong, K.; Li, Q.; Bjerrum,
N. J.; Dai, S. Bronsted acidic room temperature ionic liquids derived
from N,N-dimethylformamide and similar protophilic amides. Green
Chem. 2006, 8, 599−602.
(12) Sun, X.; Dai, S. Electrochemical investigations of ionic liquids
with vinylene carbonate for applications in rechargeable lithium ion
batteries. Electrochim. Acta 2010, 55, 4618−4626.
(30) Sanchez, L. G.; Espel, J. R.; Onink, F.; Meindersma, G. W.; De
Haan, A. B. Density, viscosity, and surface tension of synthesis grade
imidazolium, pyridinium, and pyrrolidinium based room temperature
ionic liquids. J. Chem. Eng. Data 2009, 54, 2803−2812.
(31) Gomez, E.; Calvar, N.; Dominguez, A.; Macedo, E. A. Synthesis
and temperature dependence of physical properties of four
(13) Li, Q.; Zhang, J.; Lei, Z.; Zhu, J.; Zhu, J.; Huang, X. Selection of
ionic liquids as entrainers for the separation of ethyl acetate and
ethanol. Ind. Eng. Chem. Res. 2009, 48, 9006−9012.
(14) Orchilles, A. V.; Miguel, P. J.; Vercher, E.; Martinez-Andreu, A.
Ionic liquids as entrainers in extractive distillation: Isobaric vapor-
liquid equilibria for acetone + methanol + 1-ethyl-3-methylimidazolium
307
dx.doi.org/10.1021/je200707b | J. Chem. Eng.Data 2012, 57, 298−308