Page 7 of 8
Journal of the American Chemical Society
1
2
3
4
5
We acknowledge the financial support of this work by the Sweꢀ
type semiconductors and new routes to prepare thicker films,
better PEC devices can be prepared with this type of tandem
DSꢀPEC cell design.
dish Energy Agency, the Knut and Alice Wallenberg Foundation,
the Swedish Research Council, the National Natural Science
Foundation of China (21120102036, 91233201), the National
Basic Research Program of China (973 program, 2014CB239402)
and China Scholarship Council.
6
7
8
9
REFERENCES
(1) Gratzel, M. Nature 2001, 414, 338.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(2) Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.;
Santori, E. A.; Lewis, N. S. Chem. Rev. 2010, 110, 6446.
(3) Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Nat. Photon. 2012, 6,
511.
(4) Yagi, M.; Kaneko, M. Chem. Rev. 2000, 101, 21.
(5) Francàs, L.; Bofill, R.; GarcíaꢀAntón, J.; Escriche, L.; Sala, X.; Llobet,
A. In Molecular Water Oxidation Catalysis; John Wiley & Sons, Ltd:
2014, p 29.
(6) Duan, L.; Tong, L.; Xu, Y.; Sun, L. Energy Environ. Sci. 2011, 4,
3296.
(7) Imahori, H. ChemSusChem 2015, 8, 426.
(8) Yu, Z.; Li, F.; Sun, L. Energy Environ. Sci. 2015, 8, 760.
(9) Li, L.; Duan, L. L.; Xu, Y. H.; Gorlov, M.; Hagfeldt, A.; Sun, L. C.
Chem. Commun. 2010, 46, 7307.
(10) Gao, Y.; Ding, X.; Liu, J. H.; Wang, L.; Lu, Z. K.; Li, L.; Sun, L. C.
J. Am. Chem. Soc. 2013, 135, 4219.
(11) Gao, Y.; Zhang, L.; Ding, X.; Sun, L. Phys. Chem. Chem. Phys.
2014, 16, 12008.
(12) Zhang, L.; Gao, Y.; Ding, X.; Yu, Z.; Sun, L. ChemSusChem 2014, 7,
2801.
(13) Fan, K.; Li, F.; Wang, L.; Daniel, Q.; Gabrielsson, E.; Sun, L. Phys.
Chem. Chem. Phys. 2014, 16, 25234.
(14) O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.
(15) Kirner, J. T.; Stracke, J. J.; Gregg, B. A.; Finke, R. G. ACS Appl.
Mater. Interfaces 2014, 6, 13367.
(16) Swierk, J. R.; MéndezꢀHernández, D. D.; McCool, N. S.; Liddell, P.;
Terazono, Y.; Pahk, I.; Tomlin, J. J.; Oster, N. V.; Moore, T. A.; Moore,
A. L.; Gust, D.; Mallouk, T. E. Proc. Natl. Acad. Sci. U. S. A. 2015, 112,
1681.
(17) Nattestad, A.; Mozer, A. J.; Fischer, M. K. R.; Cheng, Y. B.; Mishra,
A.; Bauerle, P.; Bach, U. Nat. Mater. 2010, 9, 31.
(18) Alessio, E.; Mestroni, G.; Nardin, G.; Attia, W. M.; Calligaris, M.;
Sava, G.; Zorzet, S. Inorg. Chem. 1988, 27, 4099.
(19) Bakac, A.; Espenson, J. H. J. Am. Chem. Soc. 1984, 106, 5197.
(20) Li, L.; Gibson, E. A.; Qin, P.; Boschloo, G.; Gorlov, M.; Hagfeldt,
A.; Sun, L. C. Adv. Mater. 2010, 22, 1759.
(21) Li, L.; Duan, L.; Wen, F.; Li, C.; Wang, M.; Hagfeldt, A.; Sun, L.
Chem. Commun. 2012, 48, 988.
(22) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin,
P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007,
72, 9550.
(23) Qin, P.; Zhu, H.; Edvinsson, T.; Boschloo, G.; Hagfeldt, A.; Sun, L.
J. Am. Chem. Soc. 2008, 130, 8570.
(24) Kitamura, T.; Ikeda, M.; Shigaki, K.; Inoue, T.; Anderson, N. A.; Ai,
X.; Lian, T.; Yanagida, S. Chem. Mater. 2004, 16, 1806.
(25) Liang, Y.; Tsubota, T.; Mooij, L. P. A.; van de Krol, R. J. Phys.
Chem. C 2011, 115, 17594.
(26) Gabrielsson, E.; Tian, H.; Eriksson, S. K.; Gao, J.; Chen, H.; Li, F.;
Oscarsson, J.; Sun, J.; Rensmo, H.; Kloo, L.; Hagfeldt, A.; Sun, L. Chem.
Commun. 2015, 51, 3858.
(27) Ji, Z.; He, M.; Huang, Z.; Ozkan, U.; Wu, Y. J. Am. Chem. Soc. 2013,
135, 11696.
(28) Van de Krol, R.; Schoonman, J. In Sustainable Energy Technologies;
Hanjalić, K., Van de Krol, R., Lekić, A., Eds.; Springer Netherlands:
2008, p 121.
(29) van de Krol, R.; Liang, Y.; Schoonman, J. J. Mater. Chem. 2008, 18,
2311.
(30) Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520.
(31) Morandeira, A.; Fortage, J.; Edvinsson, T.; Le Pleux, L.; Blart, E.;
Boschloo, G.; Hagfeldt, A.; Hammarström, L.; Odobel, F. J. Phys. Chem.
C 2008, 112, 1721.
Figure 8. The IPEC spectra of Configuration 2 in 50 mM pH 7
phosphate buffer, in two-electrode setup without applying any
bias voltage (data points are from average of three independent
experiments).
Conclusion
In summary, an nꢀtype organic dye L0 coꢀabsorbed with a
molecular water oxidation catalyst Ru1 on TiO2 was used for
preparation of a photoanode, and visible light driven water
oxidation by using this photoanode was successfully achieved.
The photoanode L0+Ru1@TiO2 can produce a remarkable
average photocurrent of 300 ꢁA cmꢀ2 under pH 7 neutral conꢀ
ditions. A hydrogen generation catalyst Co1 coꢀsensitized with
an organic dye P1 on NiO was used for a photocathode. Both
photocurrent and photoꢀstability of this photocathode were
improved compared to previous reported systems. A tandem
DSꢀPEC cell was designed and prepared by connecting the
above mentioned photoanode and photocathode. For the first
time, a metal free organic dyes sensitized tandem PEC cell can
split water by visible light with IPCE of 25% at 380 nm under
neutral pH conditions without bias. These results provide a
new guidance for the design of molecular PEC cells, leading
to a great promise to construct lowꢀcost Ptꢀfree devices for
artificial photosynthesis in the future.
ASSOCIATED CONTENT
Supporting Information
Synthesis of molecules, NMR, MS, IR, UVꢀVis and electrochemꢀ
ical measurement details are included in the supporting inforꢀ
mation. This material is available free of charge via the internet at
AUTHOR INFORMATION
Corresponding Author
Prof. Licheng Sun, KTH
Eꢀmail: lichengs@kth.se
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
ACS Paragon Plus Environment