Shi et al. Sci China Chem June (2015) Vol.58 No.6
5
This work was supported by the National Natural Science Foundation of
China (20906059, 21272145), the Shaanxi Innovative Team of Key Science
and Technology (2013KCT-17), the Fundamental Research Funds for the
Central Universities (GK201503030, GK261001095), the 111 Project, and
Canada Research Chair (to CJL) for providing financial support for this
research.
Acc Chem Res, 2012, 45: 814–825; f) Bras JL, Muzart J. Intermolec-
ular dehydrogenative Heck reactions. Chem Rev, 2011, 111:
1170–1214; g) Yeung CS, Dong VM. Catalytic dehydrogenative
cross-coupling: forming carbon-carbon bonds by oxidizing two
carbon-hydrogen bonds. Chem Rev, 2011, 111: 1215–1292; h) Liu C,
Zhang H, Shi W, Lei A. Bond formations between two nucleophiles:
transition metal catalyzed oxidative cross-coupling reactions. Chem
Rev, 2011, 111: 1780–1824; i) Willis MC. Transition metal catalyzed
alkene and alkyne hydroacylation. Chem Rev, 2010, 110: 725–748; j)
Colby DA, Bergman RG, Ellman JA. Rhodium-catalyzed C–C bond
formation via heteroatom-directed C–H bond activation. Chem Rev,
2010, 110: 624–655; k) Lyons TW, Sanford MS. Palladium-catalyzed
ligand-directed C–H functionalization reactions. Chem Rev, 2010,
110: 1147–1169; l) Sun C-L, Li B-J, Shi Z-J. Direct C–H transfor-
mation via iron catalysis. Chem Rev, 2011, 111: 1293–1314; m)
Zhang C, Tang C, Jiao N. Recent advances in copper-catalyzed de-
hydrogenative functionalization via a single electron transfer (SET)
process. Chem Soc Rev, 2012, 41: 3464–3484; n) Wang C. Manga-
nese-mediated C–C bond formation via C–H activation: from stoi-
chiometry to catalysis. Synlett, 2013, 24: 1606–1613; o) Rao Y, Shan
G, Yang XL. Some recent advances in transition-metal-catalyzed or-
tho sp2 C–H functionalization using Ru, Rh, and Pd. Sci China Chem,
2014, 57: 930–944
1
a) Pattabiraman VR, Bode JW. Rethinking amide bond synthesis.
Nature, 2011, 480: 471–479; b) Mintzer MA, Simanek EE. Nonviral
vectors for gene delivery. Chem Rev, 2009, 109: 259–302; c) Cupido
T, Tulla-Puche J, Spengler J, Albericio F. The synthesis of naturally
occurring peptides and their analogues. Curr Opin Drug Discovery
Dev, 2007, 10: 768–783; d) Carey JS, Laffan D, Thomson C, Wil-
liams MT. Analysis of the reactions used for the preparation of drug
candidate molecules. Org Biomol Chem, 2006, 4: 2337–2347; e)
Humphrey JM, Chamberlin AR. Chemical synthesis of natural prod-
uct peptides: coupling methods for the incorporation of noncoded
amino acids into peptides. Chem Rev, 1997, 97: 2243–2266
2
3
Xiao F, Liu Y, Tang C, Deng GJ. Peroxide-mediated transition-
metal-free direct amidation of alcohols with nitroarenes. Org Lett,
2012, 14: 984–987
a) Valeur E, Bradley M. Amide bond formation: beyond the myth of
coupling reagents. Chem Soc Rev, 2009, 38: 606–631; b) Han SY,
Kim YA. Recent development of peptide coupling reagents in organ-
ic synthesis. Tetrahedron, 2004, 60: 2447–2467; c) Al-Zoubi RM,
Marion O, Hall DG. Direct and waste-free amidations and cycloaddi-
tions by organocatalytic activation of carboxylic acids at room tem-
perature. Angew Chem Int Ed, 2008, 47: 2876–2879; d) Charville H,
Jackson D, Hodges G, Whiting A. The thermal and boron-catalyzed
direct amide formation reactions: mechanistically understudied yet
important processes. Chem Commun, 2010, 46: 1813–1823
7
8
Shin K, Ryu J, Chang S. Orthogonal reactivity of acyl azides in C–H
activation: dichotomy between C–C and C–N amidations based on
catalyst systems. Org Lett, 2014, 16: 2022−2025
a) Muralirajan K, Parthasarathy K, Cheng C-H. Ru(II)-catalyzed
amidation of 2-arylpyridines with isocyanates via C–H activation.
Org Lett, 2014, 14: 4262−4265; b) Hesp KD, Bergman RG, Ellman
JA. Expedient synthesis of N-acyl anthranilamides and -enamine
amides by the Rh(III)-catalyzed amidation of aryl and vinyl C–H
bonds with isocyanates. J Am Chem Soc, 2011, 133: 11430–11433
a) Shang R, Liu L. Transition metal-catalyzed decarboxylative
cross-coupling reactions. Sci China Chem, 2011, 54: 1670–1687; b)
Xiang S, Cai S, Zeng J, Liu X-W. Regio- and stereoselective synthe-
sis of 2-deoxy-C-aryl glycosides via palladium catalyzed decarboxy-
lative reactions. Org Lett, 2011, 13: 4608–4611; c) Hu J, Zhao N,
Yang B, Wang G, Guo L-N, Liang Y-M, Yang S-D. Copper-
catalyzed C–P coupling through decarboxylation. Chem Eur J, 2011,
17: 5516–5521; d) Wang C, Rakshit S, Glorius F. Palladium-
catalyzed intermolecular decarboxylative coupling of 2-phenyl-
benzoic acids with alkynes via C–H and C–C bond activation. J Am
Chem Soc, 2010, 132: 14006–14008; e) Goossen LJ, Rodríguez N,
Lange PP, Linder C. Decarboxylative cross-coupling of aryl tosylates
with aromatic carboxylate salts. Angew Chem Int Ed, 2010, 49:
1111–1114; f) Ranjit S, Duan Z, Zhang P, Liu X. Synthesis of vinyl
sulfides by copper-catalyzed decarboxylative C–S cross-coupling.
Org Lett, 2010, 12: 4134–4136; g) Wang C, Piel I, Glorius F.
Palladium-catalyzed intramolecular direct arylation of benzoic acids
by tandem decarboxylation/C–H activation. J Am Chem Soc, 2009,
131: 4194–4195; h) Duan ZY, Ranjit S, Zhang PF, Liu XG. Synthesis
of aryl sulfides by decarboxylative C–S cross-couplings. Chem Eur J,
2009, 15: 3666–3669; i) Goossen LJ, Zimmermann B, Knauber T.
Palladium/copper-catalyzed decarboxylative cross-coupling of aryl
chlorides with potassium carboxylates. Angew Chem Int Ed, 2008, 47:
7103–7106; j) Goossen LJ, Rodríguez N, Linder C. Decarboxylative
biaryl synthesis from aromatic carboxylates and aryl triflates. J Am
Chem Soc, 2008, 130: 15248–15249; k) Goossen LJ, Deng GJ, Levy
LM. Synthesis of biaryls via catalytic decarboxylative coupling. Sci-
ence, 2006, 313: 662–664
4
5
Montalbetti C, Falque V. Amide bond formation and peptide cou-
pling. Tetrahedron, 2005, 61: 10827–10852
9
a) Yoo WJ, Li CJ. Highly efficient oxidative amidation of aldehydes
with amine hydrochloride salts. J Am Chem Soc, 2006, 128:
13064–13065; b) Gnanaprakasam B, Milstein D. Synthesis of amides
from esters and amines with liberation of H2 under neutral conditions.
J Am Chem Soc, 2011, 133: 1682–1685; c) Wang Y, Zhu DP, Tang L,
Wang SJ, Wang ZY. Highly efficient amide synthesis from alcohols
and amines by virtue of a water-soluble gold/DNA catalyst. Angew
Chem Int Ed, 2011, 50: 8917–8921; d) Jiang H, Liu B, Li Y, Wang A,
Huang H. Synthesis of amides via palladium-catalyzed amidation of
aryl halides. Org Lett, 2011, 13: 1028–1031; e) Priyadarshini S, Jo-
seph PJA, Kantam ML. Copper catalyzed cross-coupling reactions of
carboxylic acids: an expedient route to amides, 5-substituted
-lactams and -acyloxy esters. RSC Adv, 2013, 3: 18283–18287; f)
Nordstrom LU, Vogt H, Madsen R. Amide synthesis from alcohols
and amines by the extrusion of dihydrogen. J Am Chem Soc, 2008,
130: 17672–17673; g) Correa A, Martin R. Ni-catalyzed direct reduc-
tive amidation via C–O bond cleavage. J Am Chem Soc, 2014, 136:
7253–7256
6
For selected recent reviews, see: a) Girard SA, Knauber T, Li C-J.
The cross-dehydrogenative coupling of Csp3–H bonds: a versatile
strategy for C–C bond formations. Angew Chem Int Ed, 2014, 53:
74–100; b) Engle KM, Mei T-S, Wasa M, Yu J-Q. Weak coordina-
tion as a powerful means for developing broadly useful C–H func-
tionalization reactions. Acc Chem Res, 2012, 45: 788–802; c) Giri R,
Shi B-F, Engle KM, Maugel N, Yu J-Q. Transition metal-catalyzed
C–H activation reactions: diastereoselectivity and enantioselectivity.
Chem Soc Rev, 2009, 38: 3242–3272; d) Li B-J, Shi Z-J. From
C(sp2)–H to C(sp3)–H: systematic studies on transition metal-
catalyzed oxidative C–C formation. Chem Soc Rev, 2012, 41: 5588–
5598; e) Colby DA, Tsai AS, Bergman RG, Ellman JA. Rhodium
catalyzed chelation-assisted C–H bond functionalization reactions.
10 Cornella J, Righi M, Larrosa I. Carboxylic acids as traceless directing
groups for formal meta-selective direct arylation. Angew Chem Int Ed,
2011, 50: 9429–9432
11 a) Maehara A, Tsurugi H, Satoh T, Miura M. Regioselective C–H
functionalization directed by a removable carboxyl group: palladium-