Direct Perfluoroalkylthiolation of Few Chalcogenols
Conclusions
To conclude, 2nd generation of trifluoromethane-
sulfenamide (BB2) turns out electrophilic enough to
react with chalcogenols and, thus, joins the few reagents
able to perform such a reaction, particular with alcohols.
The possibility to obtain higher homologs of this
reagent has opened the way to the synthesis of various
perfluoroalkyldisulfides or perfluoroalkanesulfenates,
which have been scarcely described. These results
introduce new fluorinated groups which could be of
interest for further applications.
Acknowledgement
The CNRS and the French Ministry of Research are
thanked for their financial support. The French Fluorine
Network is also thanked for its support.
Figure 2 Perfluoroalkylthiolations of some thiols. Yields
shown are of isolated products; values in parentheses are yields as
determined by 19F NMR spectroscopy using PhOCF3 as an
internal standard.
References
[1] Moissan, H. C. R. Hebd. Seances Acad. Sci. 1899, 128, 1543.
[2] (a) Schofield, H. J. Fluorine Chem. 1999, 100, 7; (b) Hiyama, T.
Organofluorine Compounds: Chemistry and Applications, Springer,
2000; (c) Kirsch, P. Modern Fluoroorganic Chemistry, Synthesis,
Reactivity, Applications, Wiley, Wheineim, 2013.
perfluoroalkylthiolation. This has been illustrated with
cholestenol (5b) and the corresponding perfluoroalkane-
sulfenates have been obtained with good yields (Scheme
1).
[3] (a) Smart, B. E. J. Fluorine Chem. 2001, 109, 3; (b) Muller, K.; Faeh,
C.; Diederich, F. Science 2007, 317, 1881; (c) Billard, T.; Magnier,
E.; Vors, J.-P. Actualité Chimique 2015, 393-394, 56.
[4] (a) Becker, A. Inventory of Industrial Fluoro-biochemicals, Eyrolles,
Paris, 1996; (b) Hird, M. Chem. Soc. Rev. 2007, 36, 2070; (c) Purser,
S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008,
37, 320; (d) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo,
C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem.
Rev. 2014, 114, 2432; (e) Gillis, E. P.; Eastman, K. J.; Hill, M. D.;
Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
[5] (a) Ilardi, E. A.; Vitaku, E.; Njardarson, J. T. J. Med. Chem. 2014, 57,
2832; (b) Ni, C.; Hu, M.; Hu, J. Chem. Rev. 2015, 115, 765; (c) Xu,
X.-H.; Matsuzaki, K.; Shibata, N. Chem. Rev. 2014, 115, 731; (d)
Toulgoat, F.; Alazet, S.; Billard, T. Eur. J. Org. Chem. 2014, 2415.
[6] Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165.
[7] (a) Avdeef, A. Absorption and Drug Development: Solubility, Per-
meability, and Charge State, Wiley, Hoboken, 2012; (b) Clark, D. E.
Drug Discovery Today 2003, 8, 927; (c) Kelder, J.; Grootenhuis, P.
D. J.; Bayada, D. M.; Delbressine, L. P. C.; Ploemen, J.-P. Pharm.
Res. 1999, 16, 1514; (d) Norinder, U.; Haeberlein, M. Adv. Drug Del.
Rev. 2002, 54, 291; (e) Smith, D. A.; Allerton, C.; Kubinyi, H.;
Walker, H.; Walker, D. K.; Mannhold, R.; Folkers, G. Pharmacoki-
netics and Metabolism in Drug Design, Wiley, Weinheim, 2012.
[8] Nenajdenko, V. G.; Muzalevskiy, V. M.; Shastin, A. V. Chem. Rev.
2015, 115, 973.
Scheme 1 Perfluoroalkylthiolation of some alcohols (Yields
shown are of isolated products; values in parentheses are yields as
determined by 19F NMR spectroscopy using PhOCF3 as an
internal standard.)
BuLi (1.1 equiv.)
THF, 0 oC, 3 h
R OSRF
+
R
OH
N
RFS
Ts
5
BB2x
(1.2 equiv.)
OSCF3
H
H
6a
H
H
65% (82%)
F3CSO
6b
H
40% (60%)
[9] Scott, S. M.; Brown, M.; Come, S. E. Expert Opin. Drug Saf. 2011,
10, 819.
[10] (a) Alazet, S.; Ollivier, K.; Billard, T. Beilstein J. Org. Chem. 2013,
9, 2354; (b) Ferry, A. Ph.D. Dissertation, Claude Bernard University,
Lyon, France, 2007.
[11] (a) Kawashima, K.; Osaka, I.; Takimiya, K. Chem. Mater. 2015, 27,
6558; (b) Devillanova, F. A.; Du Mont, W. W. Handbook of Chalco-
gen Chemistry: New Perspectives in Sulfur, Selenium and Tellurium,
Royal Society of Chemistry, Cambridge, UK, 2013.
H
H
H
H
F3CF2CSO
7b
H
70% (74%)
H
[12] Munavalli, S.; Rossman, D. I.; Rohrbaugh, D. K.; Ferguson, C. P.;
Banks, H. D. J. Fluorine Chem. 1993, 60, 85.
[13] Andreades, S.; Harris, J. F.; Sheppard, W. A. J. Org. Chem. 1964, 29,
898.
H
H
H
F3CF2CF2CSO
8b
H
50% (70%)
[14] Ceacareanu, D. M.; Gerstenberger, M. R. C.; Haas, A. Chem. Ber.
Chin. J. Chem. 2016, 34, 455—458
© 2016 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
457