Mendeleev Commun., 2019, 29, 288–291
OH
C(10)
R
N
Me
Me
C(9)
H
O
N
F(3)
C(15)
N
O
C(8) F(2)
N
C(11)
C(6)
i
N
+
1a,b
1a,b
Me
Me
S
O(1)
N(1)
O(2)
C(7)
C(12)
O
O
F(1)
N(3)
C(13)
C(14)
3d
6a R = Me (75%)
6b R = Ph (74%)
C(1)
C(2)
F(5)
F(6)
N(4)
C(5)
S(1)
C(3)
C(16)
F(4)
R
N(5)
N(2)
O
H
N
N
N
C(4)
i
+
N
O
O
N
S
O
O
Figure 1 ORTEP view of the molecular structure of 4f with thermal
ellipsoids drawn at the 50% probability level.
6c R = Me (75%)
6d R = Ph (70%)
3e
Scheme 5 Reagents and conditions: i, AcOH, 0.35 equiv. H2SO4, 80°C, 6 h.
exemplified on hexafluoro derivative 4'c. The condensation of
(hydrazinylthiazol-4-yl)furoxans hydrobromides 1a,d with cyclic
1,3-dicarbonyl compounds 3d,e resulted in the monohydrazone
derivatives 6a–d.
hydrazones 6a–d in high yields (Scheme 5). It is interesting to
note that the second carbonyl group in the cyclohexane ring of
compounds 6a,b exists as the enol form both in solid state and in
solution (an absence of C=O group absorption band in IR spectrum
and a signal of C=O group in 13C NMR spectra as well as an
appearance of OH group signal in 1H NMR spectra).
I. V. Ananyev is grateful to the Russian Foundation for Basic
Research (project no. 18-33-20075).
All synthesized compounds were characterized by spectral
Online Supplementary Materials
Supplementary data associated with this article can be found
in the online version at doi: 10.1016/j.mencom.2019.05.015.
1
(IR and H, 13C NMR spectroscopy and HRMS) and analytical
methods. The absorption bands of carbonyl group were present
in IR spectra of hydrazones 6c,d. In addition, resonance signals
for NH groups (d 11–12 ppm) in H NMR spectra and for
1
References
carbonyl groups (d 199–200 ppm) in their 13C NMR spectra were
observed. Ultimately, the structure of compound 4f was supported
by a single-crystal X-ray diffraction study (Figure 1).‡ The DFT
calculations followed by the QTAIM17,18 and IQA19 analysis
were also performed to rationalize the molecular structure of
4f which is the first structurally elucidated thiazolylfuroxan
according to the CSD20 search. It was found that the media
affect the structure 4f only slightly, whereas intramolecular non-
covalent bonding interactions play crucial role in the conformer
stabilization. The details of theoretical analysis and crystal
structure determination are given in the Online Supplementary
Materials.
In summary, effective synthesis of pharmacologically oriented
hybrid structures [2-(1H-pyrazol-1-yl)thiazol-4-yl]furoxans 4a–f
and 5 comprising the furoxan moiety as NO-donor and pharmaco-
phoric pyrazolylthiazole fragment has been accomplished. The
synthesis is based on the formation of the pyrazole ring via the
condensation of hydrazinyl fragment in (hydrazinylthiazol-4-yl)-
furoxan hydrobromides 1 with available linear 1,3-dicarbonyl
compounds 3a–c in AcOH under mineral acid (HCl, H2SO4)
catalysis. The reaction was shown to proceed through hydroxy-
pyrazoline intermediate which would dehydrate into pyrazole as
1 (a) E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem., 2014, 57,
10257; (b) S. G. Zlotin,A. M. Churakov, I. L. Dalinger, O.A. Luk’yanov,
N. N. Makhova, A. Yu. Sukhorukov and V. A. Tartakovsky, Mendeleev
Commun., 2017, 27, 535;(c)V. P.Ananikov, D. B. Eremin, S.A.Yakukhnov,
A. D. Dilman, V. V. Levin, M. P. Egorov, S. S. Karlov, L. M. Kustov, A. L.
Tarasov, A. A. Greish, A. A. Shesterkina, A. M. Sakharov, Z. N. Nysenko,
A. B. Sheremetev,A.Yu. Stakheev, I. S. Mashkovsky,A.Yu. Sukhorukov,
S. L. Ioffe, A. O. Terent’ev, V. A. Vil’, Yu. V. Tomilov, R. A. Novikov,
S. G. Zlotin, A. S. Kucherenko, N. E. Ustyuzhanina, V. B. Krylov,Yu. E.
Tsvetkov, M. L. Gening and N. E. Nifantiev, Mendeleev Commun.,
2017, 27, 425.
2 (a) G. N. Nikonov and S. V. Bobrov, in Comprehensive Heterocyclic
Chemistry III, eds. A. R. Katritzky, C. A. V. Ramsden, E. F. Scriven
and R. J. K. Taylor, Elsevier, Amsterdam, 2008, vol. 5, pp. 316–393;
(b) L. L. Fershtat and N. N. Makhova, ChemMedChem, 2017, 12,
622; (c) N. E. Ustyuzhanina, L. L. Fershtat, M. L. Gening, N. E.
Nifantiev and N. N. Makhova, Mendeleev Commun., 2018, 28, 49; (d)
A. A. Larin, L. L. Fershtat, N. E. Ustyuzhanina, M. L. Gening, N. E.
Nifantiev and N. N. Makhova, Mendeleev Commun., 2018, 28, 595.
3 (a) L. L. Fershtat and N. N. Makhova, Russ. Chem. Rev., 2016, 85, 1097;
(b) N. N. Makhova and L. L. Fershtat, Tetrahedron Lett., 2018, 59, 2317.
4 (a) L. L. Fershtat, A. A. Larin, M. A. Epishina, A. S. Kulikov, I. V.
Ovchinnikov, I. V. Ananyev and N. N. Makhova, Tetrahedron Lett., 2016,
57, 4268; (b) L. L. Fershtat, M. A. Epishina, I. V. Ovchinnikov, M. I.
Struchkova,A.A.Romanova,I.V.AnanyevandN.N.Makhova,Tetrahedron
Lett., 2016, 57, 5685; (c) A. A. Larin, L. L. Fershtat, I. V. Ananyev and N. N.
Makhova, Tetrahedron Lett., 2017, 58, 3993; (d) L. L. Fershtat,A.A. Larin,
M. A. Epishina, I. V. Ovchinnikov, A. S. Kulikov, I. V. Ananyev and N. N.
Makhova, RSC Adv., 2016, 6, 31526.
5 A. S. Kulikov, A. A. Larin, L. L. Fershtat, L. V. Anikina, S. A. Pukhov,
S. G. Klochkov, M. I. Struchkova, A. A. Romanova, I. V. Ananyev and
N. N. Makhova, Arkivoc, 2017, (iii), 250.
6 P. J. Sanfilippo, M. J. Urbanski, K. N. Beers, A. Eckardt, R. Falotico, M. H.
Ginsberg, S. Offord, J. B. Press, J. Tighe, K. Tomko and P. Andrade-
Gordon, J. Med. Chem., 1995, 38, 34.
7 C. R. Prokopp, M. A. Rubin, P. D. Sauzem, A. N. de Souza, D. B. Berlese,
R. V. Lourega, M. N. Muniz, H. G. Bonacorso, N. Zanatta, M. A. Martins
and C. F. Mello, Braz. J. Med. Biol. Res., 2006, 39, 795.
8 (a) R.Aggarwal, R. Kumar, S. Kumar, G. Garg, R. Mahajan and J. Sharma,
J. Fluorine Chem., 2011, 132, 965; (b) S. Kumar, R. Aggarwal and
C. Sharma, Synth. Commun., 2015, 45, 2022.
‡
Crystal data for 4f. Colorless single crystal (0.175×0.123×0.099 mm)
grown from the DMSO/acetone mixture is monoclinic, space group C2/c.
At 120 K: a = 20.6989(15), b = 14.7854(11) and c = 13.9162(10) Å,
b = 123.6480(10)°, V = 3545.4(4) Å3, Z = 8, dcalc = 1.676 g cm–3, F(000) =
= 1792. Intensities of 32152 reflections were measured with a Bruker
APEX2 Duo CCD diffractometer [l(MoKa) = 0.71073 Å, w-scans,
2q < 56°] and 4278 independent reflections (Rint = 0.0420) were used in
further refinement. The structure was solved by direct method and refined
by the full-matrix least-squares technique against F2 in the isotropic-
anisotropic approximation. The hydrogen atoms were found in difference
Fourier synthesis and refined in the isotropic approximation using riding
model. The refinement converged to wR2 = 0.1248, GOOF = 1.041 and
R1 = 0.0434 for 3403 independent reflections with I > 2s(I). Largest
difference peak/hole: 0.747/–0.493 eÅ–3. All calculations were performed
using SHELXL-2014/6.21
9 B. A. Donobue, E. L. Michelotti, J. C. Reader, V. Reader, M. Stirling
and C. M. Tice, J. Comb. Chem., 2002, 4, 23.
10 A. S. Kulikov, M. A. Epishina, A. I. Churakov, L. V. Anikina, L. L. Fershtat
and N. N. Makhova, Mendeleev Commun., 2018, 28, 623.
CCDC 1881110 contains the supplementary crystallographic data for
this paper. These data can be obtained free of charge from The Cambridge
– 290 –