1
1
1
2
7
43.4, 143.2, 143.0, 142.7, 139.0, 138.0, 134.5, 130.6, 130.5, 129.2,
29.1, 128.3, 127.2, 126.7, 126.6, 125.7, 124.9, 123.8, 123.5, 122.6,
20.8, 119.6, 118.9, 47.0, 31.7, 31.6, 30.8, 30.5, 29.9, 29.5, 29.3,
4 (a) T. Horiuchi, H. Miura and S. Uchida, Chem. Commun., 2003,
3
036; (b) T. Horiuchi, H. Miura, K. Sumioka and S. Uchida,
J. Am. Chem. Soc., 2004, 126, 12218; (c) L. Schmidt-Mende,
U. Bach, R. Humphry-Baker, T. Horiuchi, H. Miura, S. Ito,
S. Uchida and M. Gr a¨ tzel, Adv. Mater., 2005, 17, 813; (d) S. Ito,
S. M. Zakeeruddin, R. Humphry-Baker, P. Liska, R. Charvet,
P. Comte, M. K. Nazeeruddin, P. P e´ chy, M. Takada, H. Miura,
S. Uchida and M. Gr a¨ tzel, Adv. Mater., 2006, 18, 1202; (e)
T. Kitamura, M. Ikeda, K. Shigaki, T. Inoue, N. A. Anderson,
X. Ai, T. Lian and S. Yanagida, Chem. Mater., 2004, 16, 1806; (f)
K. Hara, T. Sato, R. Katoh, A. Furube, T. Yoshihara, M. Murai,
M. Kurashige, S. Ito, A. Shinpo, S. Suga and H. Arakawa, Adv.
Funct. Mater., 2005, 15, 246; (g) N. Koumura, Z.-S. Wang, S. Mori,
M. Miyashita, E. Suzuki and K. Hara, J. Am. Chem. Soc., 2006,
128, 14256.
5 (a) S. Kim, J. K. Lee, S. O. Kang, J. Ko, J.-H. Yum, S. Fantacci, F. De
Angelis, D. Di Censo, M. K. Nazeeruddin and M. Gr a¨ tzel, J. Am.
Chem. Soc., 2006, 128, 16701; (b) I. Jung, J. K. Lee, K. H. Song,
K. Song, S. O. Kang and J. Ko, J. Org. Chem., 2007, 72, 3652; (c)
S. Kim, H. Choi, D. Kim, K. Song, S. O. Kang and J. Ko,
Tetrahedron, 2007, 63, 3115.
9.1, 27.2, 22.7, 22.6, 14.2, 14.1. Anal. calcd for C63
7.82; H, 6.32. Found: C, 77.87; H, 6.43.
61 3 3
H N OS : C,
3
-{5-[7-(5-{4-[Bis(9,9-dimethyl-9H-fluoren-2-yl)-
amino]phenyl}thiophen-2-yl)benzo-[1,2,5]thiadiazol-4-
yl]thiophen-2-yl}-2-cyanoacrylic acid (8a)
A mixture of 7a (48 mg, 0.06 mmol) and cyanoacetic acid (10 mg,
.12 mmol) was vacuum-dried and CHCl and piperidine were
added. The solution was refluxed for 15 h. Then H O (50 ml) was
added. The organic layer was separated and dried over MgSO
0
3
2
4
.
The solvent was removed under reduced pressure. The pure
product 8a was obtained by column chromatography on silica gel
1
ꢁ
(
CH
2
Cl
2
: MeOH ¼ 6 : 1, R
f
¼ 0.27). Yield: 58%. mp 290 C. H
6
H. Choi, C. Baik, S. O. Kang, J. Ko, M.-S. Kang, M. K. Nazeeruddin
and M. Gr a¨ tzel, Angew. Chem., Int. Ed., 2008, 47, 327.
NMR (DMSO-d
6
): 8.49 (s, 1H), 8.24–8.04 (m, 5H), 7.74–7.49
13
(
m, 9H), 7.31 (m, 6H), 7.10 (m, 4H), 1.37(s, 12H). C NMR
DMSO-d ): 169.9, 163.1, 154.9, 153.2, 151.7, 151.5, 147.3, 146.4,
7
(a) M. Velusamy, K. R. Justin Thomas, J. T. Lin, Y.-C. Hsu and
K.-C. Ho, Org. Lett., 2005, 10, 1899; (b) Q. M. Zhou, Q. Hou,
L. P. Zheng, X. Y. Deng, G. Yu and Y. Cao, Appl. Phys. Lett.,
(
6
1
1
1
45.7, 143.5, 140.9, 138.4, 138.2, 136.6, 135.6, 134.2, 129.6, 129.4,
27.8, 127.1, 127.0, 126.8, 126.5, 126.0, 125.0, 124.1, 123.7, 123.3,
23.2, 122.7, 121.3, 119.7, 119.1, 118.7, 46.5, 26.7. Anal. calcd for
2
004, 84, 1653; (c) C. J. Brabec, C. Winder, N. S. Sariciftci,
J. C. Hummelen, A. Dhanabalan, P. A. Van Hal and
R. A. Janssen, Adv. Funct. Mater., 2002, 12, 709; (d) C. Winder
and N. S. Sariciftci, J. Mater. Chem., 2004, 12, 1077; (e)
E. Bundgaard and F. C. Krebs, Sol. Energy Mater. Sol. Cells,
54 38 4 2 3
C H N O S : C, 74.46; H, 4.40. Found: C, 74.11; H, 4.30.
2
2006, 39, 2823.
007, 91, 954; (f) E. Bundgaard and F. C. Krebs, Macromolecules,
3
-{5-[7-(5-{4-[Bis(9,9-dimethyl-9H-fluoren-2-yl)-amino]phenyl}-
3-hexylthiophen-2-yl)benzo[1,2-,5]thiadiazol-4-yl]-4-
8
(a) U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weiss o¨ rtel,
J. Salbeck, H. Spreizer and M. Gr a¨ tzel, Nature, 1998, 395, 583; (b)
G. R. A. Kumara, A. Konno, K. Shiratsuchi, J. Tsukahara and
K. Tennakone, Chem. Mater., 2002, 14, 954; (c) J. H. Kim,
M.-S. Kang, Y. J. Kim, J. Won, N.-G. Park and Y. S. Kang, Chem.
Commun., 2004, 1662; (d) M. Biancardo, K. West and F. C. Krebs,
Sol. Energy Mater. Sol. Cells, 2006, 90, 2575; (e) S. Lu, R. Koeppe,
S. Gunes and N. S. Sariciftci, Sol. Energy Mater. Sol. Cells, 2007,
(
hexylthiophen-2-yl}-2-cyanoacrylic acid (8b)
The product 8b was prepared using the same procedure for 8a
ꢁ
1
except that 7b was used instead of 7a. Yield: 64%. mp 224 C. H
NMR (DMSO-d ): 8.32 (s, 1H), 7.75–7.11 (m, 22H), 3.42 (m, 4H),
.45 (m, 4H), 1.36 (s, 12h), 1.10 (m, 12H), 0.71 (m, 6H). C NMR
DMSO-d ): 168.5, 162.7, 155.1, 153.5, 151.6, 151.3, 147.7, 146.4,
6
13
2
9
1, 1081; (f) T. C. Wei, C. C. Wan and Y. Y. Wang, Sol. Energy
(
6
Mater. Sol. Cells, 2007, 91, 1892; (g) J. N. Freitas, C. Longo,
A. F. Nogueira and M.-A. Paoli, Sol. Energy Mater. Sol. Cells,
1
1
1
3
45.5, 143.3, 140.6, 138.0, 137.7, 136.5, 135.8, 134.1, 129.6, 129.3,
27.3, 127.1, 126.9, 126.8, 126.3, 126.0, 124.9, 124.0, 123.6, 123.1,
23.0, 122.7, 121.8, 120.0, 118.9, 117.7, 47.5, 33.7, 32.6, 30.7, 30.5,
0.0, 29.6, 29.2, 29.1, 27.0, 22.0, 21.6, 13.9, 13.8. Anal. calcd for
2
008, 92, 1110.
M. M. M. Raposo, A. M. C. Fonseca and G. Kirsch, Tetrahedron,
004, 60, 4071.
9
2
10 X. Zhang, H. Gorohmaru, M. Kadowaki, T. Kobayashi, T. Ishi-i,
T. Thiemann and S. Mataka, J. Mater. Chem., 2004, 14, 1901.
C H N O S : C, 76.26; H, 6.01. Found: C, 76.61; H, 6.31.
2 3
6
6
62
4
1
1
1
1 (a) V. J. Majo and P. T. Perumal, J. Org. Chem., 1996, 61, 6523;
b) O. Meth-Cohn and M. Ashton, Tetrahedron Lett., 2000, 41,
2749.
2 (a) S. Kim, H. Choi, C. Baik, K. Song, S. O. Kang and J. Ko,
Tetrahedron, 2007, 63, 11436; (b) H. Choi, J. K. Lee, K. H. Song,
K. Song, S. O. Kang and J. Ko, Tetrahedron, 2007, 63, 1553.
3 K. Hara, M. Kurashige, Y. Dan-oh, C. Kasada, A. Shinpo, S. Suga,
K. Sayama and H. Arakawa, New J. Chem., 2003, 27, 783.
(
Acknowledgements
We are grateful to the KOSEF through National Research
Laboratory (No. R0A-2005-000-10034-0) program, the MKE
(
(
The Ministry of Knowledge and Economy) under the ITRC
Information Technology Research Center) program (IITA-
14 (a) P. Wang, S. M. Zakeeruddin, J. E. Moser, M. K. Nazeeruddin,
T. Sekiguchi and M. Gr a¨ tzel, Nat. Mater., 2003, 402; (b)
N. Koumura, Z. S. Wang, S. Mori, M. Miyashita, E. Suzuki and
K. Hara, J. Am. Chem. Soc., 2006, 128, 14256.
2
008-C1090-0804-0013) and BK21 (2006).
1
5 S. Nakade, T. Kanzaki, Y. Wada and S. Yanagida, Langmuir, 2005,
1, 10803.
References
2
1
2
N. Robertson, Angew. Chem., Int. Ed., 2006, 45, 2338.
(a) B. O’Ragen and M. Gr a¨ tzel, Nature, 1991, 363, 737; (b)
M. Gr a¨ tzel, Nature, 2001, 414, 338.
(a) M. K. Nazeeruddin, F. De Angelis, S. Fantacci, A. Selloni,
G. Viscardi, P. Liska, S. Ito, T. Bessho and M. Gr a¨ tzel, J. Am.
Chem. Soc., 2005, 127, 16835; (b) M. Gr a¨ tzel, J. Photochem.
Photobiol., C, 2003, 4, 145; (c) M. Gr a¨ tzel, Prog. Photovoltaic Res.
Appl., 2006, 14, 429.
16 K.-S. Ahn, M.-S. Kang, J.-K. Lee, B.-C. Shin and J.-W. Lee, Appl.
Phys. Lett., 2006, 89, 13103.
17 K.-S. Ahn, M.-S. Kang, J.-W. Lee and Y. S. Kang, J. Appl. Phys.,
2007, 101, 84312.
18 M. Jørgensen, J. Norrman and F. C. Krebs, Sol. Energy Mater. Sol.
Cells, 2008, 92, 686.
19 Q. Wang, J.-E. Moser and M. Gr a¨ tzel, J. Phys. Chem. B, 2005, 109,
14945.
3
This journal is ª The Royal Society of Chemistry 2008
J. Mater. Chem., 2008, 18, 5223–5229 | 5229