C O MMU N I C A T I O N S
to nanotubes with greater selectivity as ion channels, catalysts,
receptors, or molecule containers. Work is in progress to this end.
Acknowledgment. This work was supported by Ministerios de
Educacio´n y Ciencia and Ciencia y Tecnolog´ıa and the Xunta de
Galicia under Projects PB97-0524, SAF2001-3120, and
PGIDT00PXI20912PR, respectively, and through a research grant
to M.A.
Supporting Information Available: Detailed descriptions of the
synthesis and characterization of key compounds and crystal data,
atomic coordinates, bond lengths and angles, and anisotropic displace-
ment coefficients of 1c. This material is available free of charge via
Figure 2. Crystal structures of dimeric assemblies 2c with five molecules
of chloroform, one of which occupies the central cavity of the dimer: (left)
top view; (right) side view.
in more dilute (0.5 M) solutions may correspond to the N-H band
References
of the monomer.8e
(1) (a) Patzke, G. R.; Krumeich, F.; Nesper, R. Angew. Chem., Int. Ed. 2002,
41, 2446-2461. (b) Bong, D. T.; Clark, T. D.; Granja, J. R.; Ghadiri, M.
R. Angew. Chem., Int. Ed. 2001, 40, 988-1011. (c) Ajayan, P. M.; Zhou,
O. Z. Top. Appl. Phys. 2001, 80, 391-425.
(2) Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; McRee, D. E.; Khazanovich,
N. Nature 1993, 366, 324-327. Khazanovich, N.; Granja, J. R.; McRee,
D. E.; Milligan, R. A.; Ghadiri, M. R. J. Am. Chem. Soc. 1994, 116, 6011-
6012. Ghadiri, M. R.; Granja, J. R.; Buehler, L. K. Nature 1994, 369,
301-304. Hartgerink, J. D.; Granja, J. R.; Milligan, R. A.; Ghadiri, M.
R. J. Am. Chem. Soc. 1996, 118, 43-50.
1
A flat, all-trans conformation is also indicated by the H NMR
spectra of 1c in polar and nonpolar solvents (JNH-RH ) 9.0-9.5
Hz). However, the chemical shift of Phe NH in nonpolar solvents
is a constant 8.7 ppm at concentrations down to 2 × 10-4 M and
with heating or addition of up to 20% of methanol, showing that if
dimers are formed the association constant for dimerization must
be at least 105 M-1 (larger than for any peptide nanotube reported
hitherto). Solution (CHCl3) FT-IR studies showed the characteristic
features of â-sheet structure of peptide nanotubes and dimers: amide
(3) Seebach, D.; Matthews, J. L.; Meden, A.; Wessels, T.; Baerlocher, C.;
McCusker, L. B. HelV. Chim. Acta 1997, 80, 173-182. Clark, T. D.;
Buehler, L. K.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 651-656.
(4) Steinem, C.; Janshoff, A.; Vollmer, M. S.; Ghadiri, M. R. Langmuir 1999,
15, 3956-3964. Ferna´ndez-Lo´pez, S.; Kim, H.-S.; Choi, E. C.; Delgado,
M.; Granja, J. R.; Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger,
D. A.; Wilcoxen, K.; Ghadiri, M. R. Nature 2001, 412, 452-455.
(5) For a recent example of nanotubes made of δ-amino acids, see: Gauthier,
D.; Baillargeon, P.; Drouin, M.; Dory, Y. L. Angew. Chem., Int. Ed. 2001,
40, 4635-4638.
I (1625 cm-1), amide IIii (1523 cm-1), and amide A (3309 cm-1
)
bands. Dimer formation was also supported by FAB-MS, showing
a signal arising from single charged species corresponding to proton
dimer 2c (1718).
Colorless prismatic crystals suitable for X-ray were obtained from
the solutions of peptide 1c in chloroform by vapor-phase equilibra-
tion with hexane. The crystal structure characterized by X-ray
crystallography shows an unsymmetrical dimeric ensemble that
corroborates the nanotube structure. The two peptide subunits are
closely stacked in an antiparallel orientation with the â-sheetlike
cyclindical ensemble stabilized by six intersubunit hydrogen-
bonding interactions with an intersubunit N-O distance ranging
between 2.78 and 2.94 Å and distorted by the presence of five
chloroform molecules hydrogen-bonded to the peptide backbone.
The cyclindical dimer has an approximate van der Waals internal
diameter of 5.4 Å and a volume of 165 Å3, which is filled with
one molecule of chloroform, showing the partial hydrophobic
character of the inner face of the nanotube which is distinct from
previously reported hydrophilic nanotubes.2,8,12
In conclusion, NMR, FT-IR, MS, and X-ray diffraction data show
conclusively that the cyclic peptides 1b and 1c form dimers in which
antiparallel peptide rings are linked by a â-sheetlike set of six
hydrogen bonds. These dimers (one of which, 2c, is extremely stable
in nonpolar solvents) may be considered as essentially the basic
units of a new class of peptide nanotubes, in which the inner-cavity
properties are due in part to the cyclohexane C2. Cyclic peptides
containing C2-modified γ-Acc should endow SPN with a func-
tionalized inner surface, something that is precluded in the R- or
â-nanotubes because all amino acid side chains lie on the exterior
of the ensemble and additional modification in CR or Câ would
disrupt the assembling.2 Appropriate functionalization should lead
(6) For a recent review on supramolecular chemistry and self-assembly, see:
Science 2002, 295, 2395-2421 (special issue).
(7) For some studies with peptides made of alternating R-amino acid and
3-aminobenzoic acid derivatives, see: (a) as cation receptors, Kubik, S.;
Goddard, R. J. Org. Chem. 1999, 64, 9475-9486. Kubik, S. J. Am. Chem.
Soc. 1999, 121, 5846-5855. Pohl, S.; Goddard, R. Kubik, S. Tetrahedron
Lett. 2001, 42, 7555-7558. (b) As ion channels: Ishida, H.; Qi, Z.;
Sokabe, M.; Donowaki, K.; Inoue, Y. J. Org. Chem. 2001, 66, 2978-
2989.
(8) (a) Ghadiri, M. R.; Kobayashi, K.; Granja, J. R.; Chadha, R. K.; McRee,
D. E. Angew. Chem., Int. Ed. Engl. 1995, 34, 93-95. (b) Kobayashi, K.;
Granja, J. R.; Ghadiri, M. R. Angew. Chem., Int. Ed. Engl. 1995, 34, 95-
98. (c) Clark, T. D.; Buriak, J. M.; Kobayashi, K.; Isler, M. P.; McRee,
D. E.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 8949-8962. (d) Bong,
D. T.; Ghadiri, M. R. Angew. Chem., Int. Ed. 2001, 40, 2163-2166. (e)
Saviano, M.; Zaccaro, L.; Lombardi, A.; Pedone, C.; Di Blasio, B.; Sun,
X.; Lorenzi, G. P. J. Incl. Phenom. 1994, 18, 27-36. (f) Sun, X.; Lorenzi,
G. P. HelV. Chim. Acta 1994, 77, 1520-1526.
(9) Slow monomer-dimer equilibration was observed in NMR spectra of 1b
(0.5 mM in CH2Cl2) obtained at 189 K, which showed NH signals for
1
both the dimer (at 7.84 ppm) and the monomer (at 6.54 ppm), H NMR
spectrum is available in the Supporting Information.
(10) (a) Searle, M. S.; Westwell, M. S.; Williams, D. H. J. Chem. Soc., Perkin
Trans. 2 1995, 141-151. (b) Dunitz, J. D. Chem. Biol. 1995, 2, 709-
712.
(11) Downfield shifts of CRH signals with respect to random coil values are
reliable indicators of â-sheet structure (for recent examples concerning â
hairpin models in aqueous solution, see: (a) Maynard, A. J.; Sharman,
G. J.; Searle, M. S. J. Am. Chem. Soc. 1998, 120, 1996-2007. (b) Haque,
T. S.; Gellman, S. H. J. Am. Chem. Soc. 1997, 119, 2303-2304; also ref
8c. The 1H NMR spectrum of 1b recorded in CH2Cl2 at 189 K, showing
the CRH signals of both the monomer and the dimer (at 4.85 and 5.36
ppm, respectively), is available in the Supporting Information, as are room-
temperature spectra showing the CRH signal shifting with increasing
concentration.
(12) Engels, M.; Bashford, D.; Ghadiri, M. R. J. Am. Chem. Soc. 1995, 117,
9151-9158.
JA0296273
9
J. AM. CHEM. SOC. VOL. 125, NO. 10, 2003 2845