Table 5 Crystal and experimental data for L, 1, 2, 3a and 3b
L
1
2
3a
3b
Formula
T/K
Formula weight
Crystal system
Space group
C
173(2)
422.58
Orthorhombic
P2
25
H
26
O
2
S
2
C
173(2)
595.05
Monoclinic
P2 /c
27
H
26Cl
2
CuNO
2
S
2
C
173(2)
1471.76
Triclinic
54
H
60Br
2
Cl
8
Cu
2
O
4
S
4
C
173(2)
1691.84
Monoclinic
C2/c
51
H
54Cl
2
Cu
4
I
4
4
O S
4
51 2 4 4 4 4
C H54Cl Cu I O S
173(2)
1691.84
Monoclinic
P2 /c
¯
P1
1
2
1
2
1
1
1
˚
a/A
5.5135(2)
8.1356(3)
47.2858(14)
90
90
90
2121.03(13)
4
1.323
0.270
56.50
38 369
11.6776(6)
18.6014(10)
13.2518(7)
90
108.458(3)
90
2730.5(2)
4
1.448
1.174
56.00
49 050
11.2153(3)
11.6948(3)
12.9855(4)
85.0890(10)
65.1570(10)
79.3950(10)
1519.11(7)
2
1.609
2.548
52.00
24 176
36.215(4)
13.9659(14)
28.036(5)
90
125.048(4)
90
11 609(3)
8
1.936
3.850
54.00
51 195
17.0726(15)
21.8272(18)
16.3027(14)
90
110.571(4)u
90
5687.8(8)
4
1.976
3.929
56.00
53 038
˚
b/A
˚
c/A
a (u)
b (u)
c (u)
3
˚
V/A
Z
D
2
3
c
/g cm
2
1
m/mm
max (u)
Reflections collected
2
h
Independent reflections 5243 [R(int) = 0.0356] 6597 [R(int) = 0.1350] 5962 [R(int) = 0.0413] 12 638 [R(int) = 0.0587] 13 702 [R(int) = 0.1450]
1.155
2
Goodness-of-fit on F
1.055
0.0395, 0.1137
0.0368, 0.0918
1.062
0.0321, 0.0864
0.0348, 0.0885
1.073
0.0363, 0.0956
0.0414, 0.0992
1.025
0.0496, 0.1272
0.0675, 0.1403
R
R
1
, wR
, wR
2
2
[I . 2s(I)]
(all data)
0.0477, 0.1149
0.0490, 0.1157
1
Preparation of {[(Cu
Slow diffusion of a dichloromethane solution of L (20.0 mg,
.047 mmol) into an acetonitrile solution of copper(I) bromide
17.0 mg, 0.118 mmol) at room temperature afforded a pale
yellow crystalline complex 2. Yield: 60%. Mp: 199–200 uC
decomp.). IR (KBr disk): 2917, 2871, 1596, 1584, 1511, 1491,
2
Br
2
)(L)
2
]?4CH
2
Cl
2
}
n
(2)
in a riding manner along with the their respective parent atoms.
Relevant crystal data collection and refinement data for the
crystal structures of L, 1, 2, 3a and 3b are summarized in Table 5.
0
In the refinement procedure for L, the O1–CH
segment is disordered over two sites occupied in a 55 : 45 ratio
Fig. S9{).
2 2 2
–CH –CH –O2
(
(
(
1
1
468, 1453, 1428, 1416, 1400, 1386, 1287, 1239, 1192, 1164, 1152,
2
1
Acknowledgements
104, 1049, 1029, 951, 901, 757, 705, 673, 499 cm . Anal. Calcd
Cl Cu ]: C, 47.97; H, 4.34; S, 9.85. Found: C,
8.45; H, 3.82; S, 10.44%.
for [C52
H56Br
2
4
2 4 4
O S
This work was supported by World Class University (WCU)
project (R32-20003) and KRF (2011-0011064), Republic of
Korea.
4
Preparation of {[Cu
mixture)
4 4 2 2 2 n
I (L) ]?CH Cl } (3a and 3b as an isomeric
References
Slow diffusion of a dichloromethane solution of L (20.0 mg,
.047 mmol) into an acetonitrile solution of copper(I) iodide
22.5 mg, 0.118 mmol) yielded a pale yellow crystalline product.
1
(a) L. F. Lindoy, Coord. Chem. Rev., 1998, 174, 327; (b) R. E. Wolf
Jr., J. R. Hartman, J. M. E. Storey, B. M. Foxman and S. R. Cooper,
J. Am. Chem. Soc., 1987, 109, 4328.
(a) S. Park, S. Y. Lee and S. S. Lee, Inorg. Chem., 2010, 49, 1238; (b)
J. Y. Lee, H. J. Kim, J. H. Jung, W. Sim and S. S. Lee, J. Am. Chem.
Soc., 2008, 130, 13838; (c) J. Y. Lee, S. Y. Lee, W. Sim, K.-M. Park,
J. Kim and S. S. Lee, J. Am. Chem. Soc., 2008, 130, 6902; (d) S. Y.
Lee, S. Park, H. J. Kim, J. H. Jung and S. S. Lee, Inorg. Chem., 2008,
0
(
2
Single crystal X-ray analysis and XRPD results confirmed that
the product is a two isomeric mixture of 3a and 3b with an
identical chemical composition. Separation of the mixed isomeric
product was not possible. Yield: 90%. Mp: 194–196 uC
4
7, 1913; (e) J. Y. Lee, S. Y. Lee, J. Seo, C. S. Park, J. N. Go, W. Sim
(
decomp.). IR (KBr disk): 2918, 2871, 1597, 1585, 1508, 1491,
and S. S. Lee, Inorg. Chem., 2007, 46, 6221; (f) I. Yoon, J. Seo, J.-E.
Lee, K.-M. Park, M. S. Lah and S. S. Lee, Inorg. Chem., 2006, 45,
3487; (g) J. Seo, M. R. Song, J.-E. Lee, S. Y. Lee, I. Yoon, K.-M.
Park, J. Kim, J. H. Jung, S. B. Park and S. S. Lee, Inorg. Chem., 2006,
45, 952.
1
9
468, 1453, 1417, 1318, 1289, 1241, 1191, 1163, 1100, 1049, 1028,
2
55, 889, 853, 834, 751, 697, 565 cm . Anal. Calcd for
1
[
C H Cu Cl I O S ]: C, 36.20; H, 3.22; S, 7.58. Found: C,
51 54 4 2 4 4 4
3
6.19; H, 3.04; S, 7.51%.
3 (a) G. H. Robinson and S. A. Sangokova, J. Am. Chem. Soc., 1988,
10, 1494; (b) J. Buter, R. M. Kellog and F. van Bolhuis, J. Chem.
1
Soc., Chem. Commun., 1991, 910; (c) A. J. Blake, R. O. Gould, S.
Parsons, C. Radek and M. Schr o¨ der, Angew. Chem., Int. Ed. Engl.,
X-ray crystallographic analysis
1
995, 34, 2374; (d) M. Heller and W. S. Sheldrick, Z. Anorg. Allg.
All data were collected on a Bruker SMART APEX II ULTRA
Chem., 2004, 630, 1191; (e) B. de Groot, H. A. Jenkins and S. J. Loeb,
Inorg. Chem., 1992, 31, 203; (f) G. J. Grant, D. F. Galas, M. W.
Jones, K. D. Loveday, W. T. Pennington, G. L. Schimek, C. T. Eagle
and D. G. VanDerveer, Inorg. Chem., 1998, 37, 5299.
H. J. Kim and S. S. Lee, Inorg. Chem., 2008, 47, 10807.
S. J. Lee, J. H. Jung, J. Seo, I. Yoon, K.-M. Park, L. F. Lindoy and
S. S. Lee, Org. Lett., 2006, 8, 1641.
diffractometer equipped with graphite monochromated Mo-Ka
˚
radiation (l = 0.71073 A) generated by a rotating anode. Data
collection, data reduction and semi-empirical absorption correc-
1
4
5
6
tion were carried out using the software package of APEX2.
All of the calculations for the structure determination were
1
7
6 H. J. Kim, L. F. Lindoy and S. S. Lee, Cryst. Growth Des., 2010, 10,
850.
carried out using the SHELXTL package. In all cases, all non-
hydrogen atoms were refined anisotropically and all hydrogen
atoms were placed in idealized positions and refined isotropically
3
7
(a) P. C. Ford, E. Cariati and J. Bourassa, Chem. Rev., 1999, 99,
3625; (b) T. H. Kim, Y. W. Shin, J. H. Jung, J. S. Kim and J. Kim,
4
594 | CrystEngComm, 2012, 14, 4589–4595
This journal is ß The Royal Society of Chemistry 2012