Chemistry - A European Journal
10.1002/chem.201702237
COMMUNICATION
valence band maximum position, the conduction band minimum
C. Li, Z. G. Zou, Nano Lett. 2016, 16, 5547; c) P. Li, Y. Zhou, Z. Y.
Zhao, Q. F. Xu, X. Y. Wang, M. Xiao, Z. G. Zou, J. Am. Chem. Soc.
position was determined to be
̶ 3.1 eV with respect to the
2015, 137, 9547; d) J.G, Hou, H. J. Cheng, O. Takeda, H. M. Zhu,
vacuum level. From the determined optical bandgap and the
valence band maximum position, the conduction band minimum
and valence band maximum from the constructed band diagram
Angew. Chem. Int. Edit. 2015, 54, 8480; e) J. Hou, S. Cao, Y. Wu, F.
Liang, L. Ye, Z. Lin, L. Sun, Nano Energy 2016, 30, 59; f) L. Liang, F. C.
Lei, S. Gao, Y. F. Sun, X. C. Jiao, J. Wu, S. Qamar, Y. Xie, Angew.
Chem. Int. Ed. 2015, 54, 13971.
of the CsPbBr
3
QDs (Figure 5) corresponded to ̶ 1.03 V and 1.4
V versus the normal hydrogen electrode (NHE) at pH=0, which
[4]
a) O. K. Varghese, M. Paulose, T. J. LaTempa, C. A. Grimes, Nano. Lett.
2009, 9, 731; b) H. T. Li , X. Y. Zhang , D. R. MacFarlane, Adv. Energy
Mater. 2014, 1401077; c) X. Y. Chen , Y. Zhou , Q. Liu , Z. D. Li , J. G.
Liu , Z. G. Zou , ACS Appl. Mater. Interfaces 2012, 4 , 3372; d) J. Hou,
S. Cao, Y. Wu, F. Liang, Y. Sun, Z. Lin, L. Sun, Nano Energy 2017, 32,
[7]
is consistent with the previous reports. As a results, the
reduction potential of the CsPbBr QDs becomes more negative
3
o
o
than that of E (CO
0
2
/CO) =
̶
0.52 V vs NHE and E (CO
.24 V vs NHE, indicating that the photogenerated electrons
can react with adsorbed CO and H O to produce CO and CH
Figure 4). Currently, the photogenerated holes in the valence
band oxidize water to produce oxygen and protons via the half-
2 4
/CH ) = ̶
[
4]
359; e) Q. Liu, Y. Zhou, J. H. Kou, X. Y. Chen, Z. P. Tian, J. Gao, S. C.
2
2
4
Yan, Z. G. Zou, J. Am. Chem. Soc. 2010, 132, 14385; f) S. C. Yan, S. X.
Ouyang, J. Gao, M. Yang, J. Y. Feng, X. X. Fan, L. J. Wan, Z. S. Li, J.
H. Ye, Y. Zhou, Z. G. Zou, Angew. Chem. Int. Ed. 2010, 49, 6400; g) H.
Zhou, P. Li, J. Liu, Z. Chen, L. Liu, D. Dontsova, R. Yan, T. Fan, D.
Zhang, J. Ye, Nano Energy 2016, 25, 128; h) B. AlOtaibi, S. Z. Fan, D.
F. Wang, J. H. Ye, Z. T. Mi, ACS Catal. 2015, 5, 5342; i) S. Yan, H. Yu,
N. Wang, Z. Li, Z. Zou, Chem. Commun. 2012, 48, 1048.
(
+
̶
o
reaction H
2
O→1/2O
NHE). The in-situ formed O
2
+ 2H + 2e (E (O
2 2
/H O) = 0.82 V vs
evolution was observed in this
[
4]
2
system (Figure S11), revealing that water could efficiently act as
the electron donor of the photogenerated holes. Based on the
[
5]
a) J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, Small 2015, 11, 5262; b) R. Zhou,
M. Guzman, J. Phys. Chem. C 2014, 118, 11649; c) T. Arai, S. Tajima,
S. Sato, K. Uemura, T. Morikawa, T. Kajino, Chem. Commun. 2011, 47,
thermodynamic and experimental analysis, the CO, CH
4 2
and H
generation and O evolution in this photocatalytic system
2
demonstrates that the photogenerated electrons and holes
simultaneously participated the respective reduction and
12664; d) T. Arai, S. Sato, T. Kajino, T. Morikawa, Energy Environ. Sci.
2013, 6, 1274; e) E. E. Barton, D. M. Rampulla, A. B. Bocarsly, J. Am.
oxidation reactions, hence giving prospective signs for solar CO
reduction to valuable fuels by use of the CsPbBr QDs.
2
Chem. Soc. 2008, 130, 6342.
3
[6]
a) L. C. Schmidt, A. Pertegꢀs, S. Gonzꢀlez-Carrero, O. Malinkiewicz, S.
Agouram, G. Mꢁnguez Espallargas, H. J. Bolink, R. E. Galian, J. Pꢂrez-
Prieto, J. Am. Chem. Soc. 2014, 136, 850; b) F. Zhang, H. Zhong, C.
Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong, ACS Nano
In summary, we have successfully synthesized colloidal
quantum dots of inorganic cesium lead halide perovskites. The
bandgap energies and photoluminescence spectra are tunable
over the visible spectral region by quantum size effects on an
atomic scale. The increased carrier lifetime revealed by time-
resolved PL spectra, suppressing the detrimental electron−hole
recombination, thereby accounting for the improved electron-
2015, 9, 4533; c) G. Li, Z. K. Tan, D. Di, M. L. Lai, L. Jiang, J. H. W.
Lim, R. H. Friend, N. C. Greenham, Nano Lett. 2015, 15, 2640; d) F.
Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang, M. G. Kanatzidis, Nat.
Photonics 2014, 8, 489; e) S. Park, W. J. Chang,C. W. Lee, S. Park, H.
Y. Ahn, K. T. Nam, Nat. Energy 2016, 2, 16185.
hole separation efficiency. As a result, the CsPbBr
3
QDs with the
[7]
a) X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song, H. Zeng, Adv. Funct.
Mater. 2016, 26, 2435; b) Y. Wang, X. Li, J. Song, L. Xiao, H. Zeng, H.
Sun, Adv. Mater. 2015, 27, 7101; c) J. Shamsi, Z. Dang, P. Bianchini, C.
Canale, F. D. Stasio, R. Brescia, M. Prato, L. Manna, J. Am. Chem.
Soc. 2016, 138, 7240; d) L. Protesescu, S. Yakunin, M. I. Bodnarchuk,
F. Krieg, R. Caputo, C. H. Hendon, G. X. Yang, A. Walsh, M. V.
Kovalenko, Nano Lett. 2015, 15, 3692; e) J. Song, J. Li, X. Li, L. Xu, Y.
Dong, H. Zeng, Adv. Mater. 2015, 27, 7162; f) J. B. Hoffman, A. L.
Schleper, P. V. Kamat, J. Am. Chem. Soc. 2016, 138, 8603; g) X. M. Li,
D. J. Yu, F. Cao, Y. Gu, Y. Wei, Y. Wu, J. Z. Song, H. B. Zeng, Adv.
Funct. Mater. 2016, 26, 5903; h) V. K. Ravi, G. B. Markad, A. Nag, ACS
Energy Lett. 2016, 1, 665; (i) Y. F. Xu, M. Z. Yang, B. X. Chen, X. D.
Wang, H. Y. Chen, D. B. Kuang, C. Y. Su, J. Am. Chem. Soc. 2017,
highly selectivity over 99% achieve an efficient yield rate of 20.9
-1
2
μmol g for solar CO reduction. This work not only provides a
deeper understanding of the electron-transfer mechanism
involved in inorganic colloidal perovskite materials as efficient
photocatalysts but also should open a new avenue and stimulate
further studies toward developing more efficient visible-light-
responsive colloidal perovskite quantum dots for CO
photoreduction utilizing solar energy.
2
Acknowledgements
139, 5660.
[
[
[
8]
F. F. Schweinberger, M. J. Berr, M. Döblinger, C. Wolff, K. E. Sanwald,
A. S. Crampton, C. J. Ridge, Frank Jäckel, J. Feldmann, M. Tschurl, U.
Heiz, J. Am. Chem. Soc. 2013, 135, 13262.
This work was supported by National Science Foundation of
China (No. 51472027, 51672034, 21110102036), National Basic
Research Program of China (973 program, 2014CB239402), the
Swedish Energy Agency, and the K & A Wallenberg Foundation.
9]
a) F. C. Lei, L. Zhang, Y. F. Sun, L. Liang, K. T. Liu, J. Q. Xu, Q. Zhang,
B. C. Pan, Y. Luo, Y. Xie, Angew. Chem. Int. Ed. 2015, 54, 9266; b) X.
D. Zhang, Y. Xie, Chem. Soc. Rev. 2013, 42, 8187.
10] a) B. J. Liu, J. Photochem. Photobio. A 1998, 113, 93; b) A. Manzi,
T.Simon, C. Sonnleitner, M. Doblinger, R. Wyrwich, O. Stern, J. K.
Stolarczyk, J. Feldmann, J. Am. Chem. Soc. 2015, 137, 14007; c) C.
Wang, R. L. Thompson, P. Ohodnicki, J. Baltrus, C. Matranga, J. Mater.
Chem. 2011, 21, 13452.
Keywords: Colloidal perovskite quantum dots • CsPbBr
quantum size effects • solar fuels • solar CO reduction
3
•
2
[
[
1]
2]
a) L. Thompson, J. T. Jr. Yates, Chem. Rev. 2006, 106, 4428; b) X. B.
Chen, S. S. Mao, Chem. Rev. 2007, 107, 2891.
[
[
11] C. M. Hansen, Hansen solubility parameters: a user's handbook, CRC
press, 2007.
a) S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, ACS Nano
12] a) Z. Zhang, Y. Huang, K. Liu, L. Guo, Q. Yuan, B. Dong, Adv. Mater.
2010, 4, 1259; b) T. Sakakura, J. C. Choi, H. Yasuda, Chem. Rev. 2007,
2015, 27, 5906; b) H. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.
107, 2365.
Yu, H. Jiang, J. Am. Chem. Soc. 2015, 137, 13440.
[
3]
a) W. G. Tu, Y. Zhou, Z. G. Zou, Adv. Mater. 2014, 26, 4607; b) H. J. Li,
Y. Y. Gao, Y. Zhou, F. T. Fan, Q. T. Han, Q. F. Xu, X. Y. Wang, M. Xiao,
This article is protected by copyright. All rights reserved.