TiCl -Catalyzed Indirect Anti-Markovnikov Hydration of Alkynes:
4
Application to the Synthesis of Benzo[b]furans
Lutz Ackermann*,†,‡ and Ludwig T. Kaspar‡
Institut f u¨ r Organische und Biomolekulare Chemie, Georg-August-UniVersitaet Goettingen, Tammannstr. 2,
D-37077 Goettingen, Germany, and Department of Chemistry and Biochemistry,
Ludwig-Maximilians-UniVersitaet Muenchen, Butenandtstrasse 5-13, D-81377 Muenchen, Germany
An efficient methodology for the indirect anti-Markovnikov hydration of unsymmetrically substituted
terminal and internal alkynes is based on TiCl -catalyzed hydroamination reactions. Its application to
4
ortho-alkynylhaloarenes, followed by a copper-catalyzed O-arylation, provides flexible access to substituted
benzo[b]furans.
Introduction
protocol for highly selective anti-Markovnikov hydration reac-
tions of internal alkynes has proven elusive. An overall, indirect
hydration of an alkyne is accomplished through a sequence
The regioselective functionalization of unsymmetrically
substituted alkynes is of fundamental importance in synthetic
6
consisting of a regioselective hydroamination and the subsequent
hydrolysis of the generated imine.
1
organic chemistry. The hydration of carbon-carbon triple
bonds provides direct access to substituted ketones and alde-
7
8
Pioneering studies on zirconium- and titanium-catalyzed
2
hydes. Traditionally, toxic mercury(II) compounds were em-
9
hydroamination reactions of alkynes set the stage for the
ployed for the addition of water to alkynes, yielding the
corresponding Markovnikov products.1 Similar regioselec-
tivities were accomplished through the use of expensive late
transition-metal catalysts.2 Hydration reactions with excellent
anti-Markovnikov selectivities were achieved for terminal
alkynes with ruthenium-based catalysts.2 However, a general
development of more elaborate titanium-based hydroamination
-3
10,11
catalysts.
We on the contrary felt attracted by the possibility
of employing inexpensive TiCl4 as precatalyst for preparatively
,4
12
useful intermolecular hydroamination reactions of alkynes.
,5,6
(5) (a) Tokunaga, M.; Wakatsuki, Y. Angew. Chem., Int. Ed. 1998, 37,
867-2869. (b) Suzuki, T.; Tokunaga, M.; Wakatsuki, Y. Org. Lett. 2001,
, 735-737. (c) Tokunaga, M.; Suzuki, T.; Koga, N.; Fukushima, T.;
2
3
†
Georg-August-Universitaet Goettingen.
Ludwig-Maximilians-Universitaet Muenchen.
Horiuchi, A.; Wakatsuki, Y. J. Am. Chem. Soc. 2001, 123, 11917-11924.
(d) Wakatsuki, Y.; Hou, Z.; Tokunaga, M. Chem. Rec. 2003, 3, 144-157.
(e) Grotjahn, D. B.; Incarvito, C. D.; Rheingold, A. L. Angew. Chem., Int.
Ed. 2001, 40, 3884-3887. (f) Grotjahn, D. B.; Lev, D. A. J. Am. Chem.
Soc. 2004, 126, 12232-12233. (g) Grotjahn, D. B. Chem.-Eur. J. 2005,
11, 7146-7153. (h) Alvarez, P.; Bassetti, M.; Gimeno, J.; Mancini, G.
Tetrahedron Lett. 2001, 42, 8467-8470. (i) Chevallier, F.; Breit, B. Angew.
Chem., Int. Ed. 2006, 45, 1599-1602. (j) Labonne, A.; Kribber, T.;
Hintermann, L. Org. Lett. 2006, 8, 5853-5856.
‡
(1) (a) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem., Int.
Ed. 2004, 43, 3368-3398. (b) Alonso, F.; Beletskaya, I. P.; Yus, M. Chem.
ReV. 2004, 104, 3079-3159.
(
2) (a) Hintermann, L.; Labonne, A. Synthesis 2007, 1121-1150. (b)
Tani, K.; Kataoka, Y. In Catalytic Heterofunctionalization; Togni, A.,
Gr u¨ tzmacher, H., Eds.; Wiley-VCH: Weinheim, 2001; pp 171-216.
(3) For selected recent examples of the use of strong Brønsted acids,
see: (a) Le Bras, G.; Provot, O.; Peyrat, J.-F.; Alami, M.; Brion, J.-D.
Tetrahedron Lett. 2006, 47, 5497-5501. (b) Tsuchimoto, T.; Joya, T.;
Shirakawa, E.; Kawakami, Y. Synthesis 2000, 1777-1778 and references
therein.
(6) Oestreich, M. Sci. Synth. 2007, 25, 199-211.
(7) (a) Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc.
1988, 110, 8729-8731. (b) Walsh, P. J.; Baranger, A. M.; Bergman, R. G.
J. Am. Chem. Soc. 1992, 114, 1708-1719. (c) Duncan, A. P.; Bergman, R.
G. Chem. Rec. 2002, 2, 431-445.
(
4) Selected examples: (a) Meier, I. K.; Marsella, J. A. J. Mol. Catal.
1
993, 78, 31-42. [Au]: (b) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka,
(8) For a first titanium-catalyzed intermolecular hydroamination of an
alkyne, see: (a) Hill, J. E.; Profilet, R. D.; Fanwick, P. E.; Rothwell, I. P.
Angew. Chem., Int. Ed. Engl. 1990, 29, 664-665. See also: (b) McGrane,
P. L.; Jensen, M.; Livinghouse, T. J. Am. Chem. Soc. 1992, 114, 5459-
5460. (c) McGrane, P. L.; Livinghouse, T. J. Org. Chem. 1992, 57, 1323-
1324. (d) Polse, J. L.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1998, 120, 13405-13414.
M. Angew. Chem., Int. Ed. 2002, 41, 4563-4565. (c) Fukuda, Y.; Utimoto,
K. J. Org. Chem. 1991, 56, 3729-3731. [Pt]: (d) Hiscox, W.; Jennings, P.
W. Organometallics 1990, 9, 1997-1999. (e) Hartman, J. W.; Hiscox, W.
C.; Jennings, P. W. J. Org. Chem. 1993, 58, 7613-7614. [Rh]: (f) Blum,
J.; Huminer, H.; Alper, H. J. Mol. Catal. 1992, 75, 153-160. [Ir]: (g)
Hirabayashi, T.; Okimoto, Y.; Saito, A.; Morita, M.; Sakaguchi, S.; Ishii,
Y. Tetrahedron 2006, 62, 2231-2234 and references therein.
(9) A review: Pohlki, F.; Doye, S. Chem. Soc. ReV. 2003, 32, 104-114.
1
0.1021/jo070887i CCC: $37.00 © 2007 American Chemical Society
Published on Web 07/13/2007
J. Org. Chem. 2007, 72, 6149-6153
6149