80
Vol. 56, No. 1
1131, 1100, 902, 874, 763, 656. MS m/z: 254 (Mꢂ), 226, 144, 109, 74, 43.
5,6-Dimethylpyrazine-2,3-dicarbonitrile (6a, C8H6N4): Yellow solid; mp
110—112 °C. 1H-NMR (CDCl3) d: 2.72 (6H, s). 13C-NMR (CDCl3) d:
158.0, 130.3, 113.2, 22.7. IR (KBr) cmꢁ1: 3030, 2955, 2150, 1577, 1469,
1345. MS m/z: 158 (Mꢂ), 117, 76, 41.
bled at a rate of 5 ml/min into the reaction mixture while stirring for appro-
priate time at room temperature. After completion of the reaction as indi-
cated by TLC (ethyl acetate/n-hexane, 2 : 1), the reaction mixture was
washed with water (2ꢀ10 ml) and the solid residue was crystallized from
ethanol to give pure product 6.
General Procedure for the Preparation of 2,3-Dihydro-1H-perimidins
5,6-Bis(4-methoxyphenyl)pyrazine-2,3-dicarbonitrile (6b, C20H14N4O2):
Pale yellow solid; mp 190—192 °C. 1H-NMR (CDCl3) d: 7.63 (4H, d,
Jꢃ6.8 Hz), 6.95 (4H, d, Jꢃ6.8 Hz), 3.87 (6H, s). 13C-NMR (CDCl3) d:
164.9, 155.2, 132.4, 129.2, 126.7, 117.4, 114.3, 55.7. IR (KBr) cmꢁ1: 3038,
2964, 2840, 2146, 1607, 1482, 1380, 1261, 1173. MS m/z (%): 342 (Mꢂ),
234, 131, 117, 108, 76, 41.
1-(2,3-Dihydro-2-methyl-1H-perimidin-2-yl)ethanone (8a, C14H14N2O):
Brown solid; mp 184—187 °C (dec.). 1H-NMR (CDCl3) d: 7.12 (2H, t,
Jꢃ7.64 Hz), 6.91 (2H, d, Jꢃ8.1 Hz), 6.46 (2H, d, Jꢃ7.2 Hz), 3.32 (2H, br s),
2.07 (3H, s), 1.45 (3H, s). 13C-NMR (CDCl3) d: 212.0, 141.7, 134.6, 127.5,
115.6, 112.0, 104.5, 71.9, 24.8, 23.8. IR (KBr) cmꢁ1: 3280, 3242, 3050,
2950, 1710, 1589, 1469. MS m/z: 226 (Mꢂ), 157, 126, 72, 43. Anal. Calcd:
C, 74.31; H, 6.24; N, 12.38; Found: C, 74.35; H, 6.22; N, 12.43.
(8a, b) a-Hydroxy ketone
1
(1 mmol), naphthalene-1,8-diamine
7
(1 mmol), CAN (0.05 mmol) and water (5 ml) were taken in 50 ml two-
necked round bottomed flask equipped with a gas passing tube. Air was bub-
bled at a rate of 5 ml/min into the reaction mixture while stirring for appro-
priate time at room temperature. After completion of the reaction as indi-
cated by TLC (ethyl acetate/n-hexane, 3 : 1), the reaction mixture was
washed with water (2ꢀ10 ml) and the solid residue was crystallized with
ethanol to give pure product 8.
Compounds Characterization Data 2,3-Diphenylquinoxaline (4a,
1
C20H14N2): White solid; mp 124—126 °C. H-NMR (CDCl3) d: 8.16—8.24
(2H, m), 7.74—7.80 (2H, m), 7.50—7.58 (4H, m), 7.30—7.38 (6H, m). 13C-
NMR (CDCl3) d: 153.5, 141.3, 139.1, 130, 129.9, 129.2, 128.8, 128.3. IR
(KBr) cmꢁ1: 3055, 1550, 1488, 1436, 1342, 1071, 974, 768, 696. MS m/z:
282 (Mꢂ), 205, 128, 77.
(2,3-Dihydro-2-phenyl-1H-perimidin-2-yl)(phenyl)methanone (8b,
1
C24H18N2O): Dark brown solid; mp 195—197 °C (dec.). H-NMR (CDCl3)
6,7-Dichloro-2,3-diphenylquinoxaline (4b, C20H12Cl2N2): Purple solid;
mp 146—147 °C. 1H-NMR (CDCl3) d: 8.32 (2H, s), 7.50—7.54 (4H, m),
7.33—7.40 (6H, m). 13C-NMR (CDCl3) d: 154.6, 140.5, 137.3, 132.8,
130.2, 129.9, 129.2, 128.9. IR (KBr) cmꢁ1: 3055, 1534, 1437, 1334, 1184,
1105, 1018, 960, 881, 765, 693. MS m/z: 350 (Mꢂ), 204, 146, 77.
2,3-Bis(4-methoxyphenyl)quinoxaline (4c, C22H18N2O2): Yellow solid; mp
150—151 °C. 1H-NMR (CDCl3) d: 8.10—8.17 (2H, m), 7.72—7.76 (2H,
m), 7.52 (4H, d, Jꢃ8.7 Hz), 6.90 (4H, d, Jꢃ8.7 Hz), 3.85 (6H, s). 13C-NMR
(CDCl3) d: 160.2, 153.0, 141.1, 131.8, 131.3, 129.5, 129.0, 13.8, 55.3. IR
(KBr) cmꢁ1: 3045, 2925, 1601, 1508, 1460, 1387, 1339, 1294, 1242, 1165,
1023, 971, 829, 764, 548. MS m/z: 342 (Mꢂ), 313, 166, 76.
d: 7.66—7.83 (2H, m), 7.36—7.53 (3H, m), 6.86—7.23 (9H, m), 6.42 (2H,
d, Jꢃ7.9 Hz), 3.75 (2H, br s). 13C-NMR (CDCl3) d: 203.1, 143.1, 141.2,
138.0, 135.9, 134.2, 134.11, 133.6, 132.6, 131.9, 130.3, 128.3, 128.2, 126.7,
126.2, 124.2, 123.1, 122.7, 121.5, 119.2, 117.2, 114.1, 109.4, 98.8. IR (KBr)
cmꢁ1: 3325, 3263, 3056, 2954, 1707, 1582, 1473. MS m/z: 350 (Mꢂ), 246,
170, 157, 126, 77. Anal. Calcd: C, 82.26; H, 5.18; N, 7.99; Found: C, 82.20;
H, 5.22; N, 7.96.
Results and Discussion
Although CAN is far superior to many other one-electron
oxidants, the vast majority of CAN-mediated oxidations re-
quire more than two equivalents of the oxidant for comple-
tion of the reaction. This precludes its use in large-scale
transformations. Development of reactions requiring only
catalytic amounts of CAN is therefore very important.30—32)
To illustrate the need of catalyst, the reaction between o-
phenylenediamine and benzoin has been studied in various
molar ratios of CAN under air blowing in water. In the ab-
sence of CAN, the reaction yield was trace. The best results
have been obtained with 5 mol% of CAN after 45 min at
room temperature. The yield of reaction with increasing the
quantity of CAN is not considerably increased.
2,3-Dimethylquinoxaline (4d, C10H10N2): Yellow solid; mp 105—106 °C.
1H-NMR (CDCl3) d: 7.93—7.99 (2H, m), 7.62—7.68 (2H, m), 2.71 (6H, s).
13C-NMR (CDCl3) d: 153.4, 141.1, 128.8, 128.3, 23.2. IR (KBr) cmꢁ1
:
3100, 2990, 1563, 1483, 1431, 1392, 1315, 1158, 984, 760, 669, 611. MS
m/z: 158 (Mꢂ), 117, 76, 50.
6,7-Dichloro-2,3-dimethylquinoxaline (4e, C10H8Cl2N2): Yellow solid; mp
198—200 °C. 1H-NMR (CDCl3) d: 8.08 (2H, s), 2.72 (6H, s). 13C-NMR
(CDCl3) d: 154.9, 139.8, 133.1, 129.1, 23.2. IR (KBr) cmꢁ1: 3135, 3000,
1591, 1455, 1391, 1317, 1170, 1098, 888, 847, 755. MS m/z: 226 (Mꢂ), 185,
145, 118, 74.
2-Methyl-3-propylquinoxaline (4f, C12H14N2): Yellow solid; mp 63—
1
64 °C. H-NMR (CDCl3) d: 7.90—7.98 (2H, m), 7.61—7.67 (2H, m), 2.97
(2H, t, Jꢃ7.8 Hz), 2.76 (3H, s), 1.87—1.93 (2H, m), 1.09 (3H, t, Jꢃ7.2 Hz).
13C-NMR (CDCl3) d: 156.3, 141.5, 130.2, 129.8, 128.6, 127.8, 126.6, 125.9,
35.6, 23.5, 19.3, 13.9. IR (KBr) cmꢁ1: 3100, 2995, 1556, 1481, 1457, 1320,
1148, 1126, 997, 768, 746, 609. MS m/z: 186 (Mꢂ), 171, 158, 76, 45.
6,7-Dichloro-2-methyl-3-propylquinoxaline (4g, C12H12Cl2N2): Purple
It is important to note, this reaction didn’t proceed effi-
ciently without air blowing and the reaction yield was only
about 30% after stirring 5 h at room temperature.
1
solid; mp 90—91 °C. H-NMR (CDCl3) d: 8.12 (1H, s), 8.09 (1H, s), 2.95
(2H, t, Jꢃ7.8 Hz), 2.75 (3H, s), 1.83—1.89 (2H, m), 1.08 (3H, t, Jꢃ7.3 Hz).
13C-NMR (CDCl3) d: 158.0, 154.6, 139.9, 139.6, 132.9, 132.9, 129.3, 129.0,
The results of in situ aerobic oxidation and CAN catalyzed
37.7, 22.8, 20.9, 14.0. IR (KBr) cmꢁ1: 3040, 2950, 1589, 1369, 1310, 1169, condensation reaction of a-hydroxy ketone 1 or a-keto
Table 1. Synthesis of Quinoxalines in the Presence of CAN via Aerobic Oxidation in Water at Room Temperature
Yielda) (%)
(Time, min)
Entry
R1
R2
R3
X
Product
1
2
3
4
5
6
7
8
9
H
Cl
H
H
Cl
H
Cl
H
Cl
H
Ph
Ph
Ph
CHOH
CHOH
CHOH
CHOH
4a
4b
4c
4d
4e
4f
4g
4a
4b
4c
97 (45)
92 (50)
93 (45)
86 (55)
80 (50)
65 (60)
67 (60)
72 (55)
63 (45)
70 (50)
Ph
p-MeOC6H4
Me
p-MeOC6H4
Me
Me
Me
Me
Ph
Me
n-Pr
n-Pr
Ph
CHOH
CꢃNOH
CꢃNOH
CꢃNOH
CꢃNOH
CꢃNOH
Ph
Ph
10
p-MeOC6H4
p-MeOC6H4
a) Isolated yields.