J. Am. Chem. Soc. 1998, 120, 12289-12296
12289
Heterogeneous Heck Catalysis with Palladium-Grafted Molecular
Sieves
Christian P. Mehnert, David W. Weaver, and Jackie Y. Ying*
Contribution from the Department of Chemical Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139
ReceiVed May 20, 1997. ReVised Manuscript ReceiVed September 30, 1998
Abstract: The synthesis and characterization of palladium-grafted mesoporous MCM-41 material, designated
Pd-TMS11, are described. The material is investigated for carbon-carbon coupling reactions (Heck catalysis)
with activated and nonactivated aryl substrates. For the preparation of the new catalyst, a volatile organometallic
precursor is reacted in the gas phase with the surface of the porous framework, generating a highly dispersed
metal deposition. The ultrahigh surface area, the large pore opening, and the highly dispersed catalyst species
in Pd-TMS11 material create one of the most active heterogeneous catalysts for Heck reactions.
Introduction
interest for catalysis involving bulky substrates, which have been
a challenge for zeolitic materials due to their pore opening
restrictions (4-12 Å). We have focused our attention on
carbon-carbon coupling reactions (Heck catalysis)5 whereby
palladium is used for the olefination of aryl halides with vinyl
substrates, forming bulky coupling products. Heck catalysis is
one of the most versatile tools in modern synthetic chemistry
and has great potential for future industrial applications.
Although recent advances in homogeneous6 and heterogeneous7
Heck catalysis have attracted considerable attention, these
catalysts currently suffer from several drawbacks, such as low
turnover numbers (TON) and limited lifetime.8
Recently discovered hexagonally packed mesoporous mo-
lecular sieves1 (designated MCM-41) are of great interest to
catalysis because their large and uniform pore sizes (20-100
Å) allow sterically hindered molecules facile diffusion to their
internal active sites. These nanostructured materials have a well-
defined cylindrical pore structure and ultrahigh surface areas
of up to 1200 m2/g, which make them excellent supports for a
new generation of heterogeneous catalysts.2 This research
focuses on the synthesis and application of modified mesoporous
materials3,4 that have an active species attached to the framework
via host-guest interactions, creating discrete and uniform sites
on the inner walls of the porous systems. Due to their large
pore sizes (>20 Å), these molecular sieves are of particular
(5) Reviews: (a) Herrmann, W. A. In Applied Homogeneous Catalysis
with Organometallic Compounds; Cornils, B., Herrmann, W. A., Eds.;
VCH: Weinheim, Germany, 1996; Vol. 2, pp 712-732. (b) Cabri, W.;
Candiani, I. Acc. Chem. Res. 1995, 28, 2-7. (c) Daves, G. D., Jr.; Hallberg,
A. Chem. ReV. 1989, 89, 1433-1445. (d) de Meijer, A.; Meyer, F. E. Angew.
Chem., Int. Ed. Engl. 1994, 33, 2379-2411. (e) Grushin, V. V.; Alper, H.
Chem. ReV. 1994, 94, 1047-1062.
* To whom correspondence should be addressed.
(1) (a) Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.;
Beck, J. S. Nature 1992, 359, 710-712. (b) Beck, J. S.; Vartuli, J. C.;
Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C.
T-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgens, J. B.;
Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834-10843.
(2) Reviews: (a) Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem.
1998, in press. (b) Sayari, A. Chem. Mater. 1996, 8, 1840-1852. (c)
Behrens, P. AdV. Mater. 1993, 5, 127-132.
(6) (a) Beller, M.; Fischer, H.; Herrmann, W. A.; O¨ fele, K.; Brossmer,
C. Angew. Chem., Int. Ed. Engl. 1995, 34, 1848-1849. (b) Beller, M.;
Riermeier, T. H. Tetrahedron Lett. 1996, 37, 6535-6538. (c) Beller, M.;
Riermeier, T. H.; Haber, S.; Kleiner, H.-J.; Herrmann, W. A. Chem. Ber.
1996, 129, 1259-1264. (d) Ben-David, Y.; Portnoy, M.; Milstein, D.
Organometallics 1992, 11, 1995-1996. (e) Herrmann, W. A.; Elison, M.;
Fischer, J.; Ko¨cher, C.; Artus, G. R. J. Angew. Chem., Int. Ed. Engl. 1995,
34, 2371-2374. (f) Jeffery, T. Tetrahedron Lett. 1994, 35, 3051-3054.
(g) Loiseleur, O.; Meier, P.; Pfaltz, A. Angew. Chem., Int. Ed. Engl. 1996,
35, 200-202. (h) Portnoy, M.; Ben-David, Y.; Milstein, D. Organometallics
1994, 13, 3465-3479. (i) Herrmann, W. A.; Brossmer, C.; O¨ fele, K.;
Reisinger, C.-P.; Priermeier, T.; Beller, M.; Fischer, H. Angew. Chem., Int.
Ed. Engl. 1995, 34, 1844-1848. (j) Herrmann, W. A.; Brossmer, C.; O¨ fele,
K.; Beller, M.; Fischer, H. Mol. Catal. A 1995, 103, 133-146. (k) Herrmann,
W. A.; Brossmer, C.; Reisinger, C.-P.; Riermeier, T. H.; O¨ fele, K.; Beller,
M. Chem. Eur. J. 1997, 3, 1357-1364. (l) Reetz, M. T.; Lohmer, G.;
Schwickardi, R. Angew. Chem. 1998, 110, 492-495. (m) Reetz, M. T.;
Lohmer, G.; Schwickardi, R. Angew. Chem., Int. Ed. Engl. 1997, 36, 1526-
1529. (n) Ohff, M.; Ohff, A.; van der Boom, M. E.; Milstein, D. J. Am.
Chem. Soc. 1997, 119, 11687-11688.
(7) (a) Reetz, M. T.; Lohmer, G. Chem. Commun. 1996, 1921-1922.
(b) Augustine, R. L.; O’Leary, S. T. J. Mol. Catal. A 1992, 72, 229-242.
(c) Augustine, R. L.; O’Leary, S. T. J. Mol. Catal. A 1995, 95, 277-285.
(d) Beller, M.; Ku¨hlein, K. Synlett 1995, 441-442. (e) Beller, M.; Fischer,
H.; Ku¨hlein, K.; Reisinger, C.-P.; Herrmann, W. A. J. Organomet. Chem.
1996, 520, 257-259.
(8) (a) Baumeister, P.; Seifert, G.; Steiner, H. (Ciba-Geigy), EP Patent
No. A 584 043, 1992. (b) Beller, M.; Tafesh, A.; Herrmann, W. A. DE
Patent No. 19 503 119, 1996. (c) DeVries, R. A.; Mendoza, A. Organo-
metallics 1994, 13, 2405-2411.
(3) Mehnert, C. P.; Ying, J. Y. Chem. Commun. 1997, 2215-2216.
(4) (a) Ryoo, R.; Jun, S.; Kim, J. M.; Kim, M. J. Chem. Commun. 1997,
2225-2226. (b) Yonemitsu, M.; Tanaka, Y.; Iwamoto, M. Chem. Mater.
1997, 9, 2679-2681. (c) Maschmeyer, T.; Oldroyd, R. D.; Sankar, R. D.;
Thomas, J. M.; Shannon, I. J.; Klepetko, J. A.; Masters, A. F.; Beatie, J.
K.; Catlow, C. R. A. Angew. Chem., Int. Ed. Engl. 1997, 109, 11713-
1716. (d) Diaz, J. F.; Balkus, K. J., Jr.; Bedioui, F.; Kurshev, V.; Kevan,
L. Chem. Mater. 1997, 9, 61-67. (e) Liu, C.-J.; Li, S. G.; Pang, W.-Q.;
Che, C.-M. Chem. Commun. 1997, 65-66. (f) Maschmeyer, T.; Rey, F.;
Sankar, G.; Thomas, J. M. Nature 1995, 378, 159-162. (g) Morey, M.;
Davidson, A.; Eckert, H.; Stucky, G. Chem. Mater. 1996, 8, 486-492. (h)
Rao, Y. V. S.; De Vos, D. E.; Bein, T.; Jacobs, P. A. Chem. Commun.
1997, 355-356. (i) Sutra, P.; Brunel, D. Chem. Commun. 1996, 2485-
2486. (j) Wu, C.-G.; Bein, T. Chem. Mater. 1994, 6, 1109-1112. (k) Zhang,
W.; Wang, J.; Tanev, P. T.; Pinnavaia, T. J. Chem. Commun. 1996, 979-
980. (l) Abdel-Fattah, T. M.; Pinnavaia, T. J. Chem. Commun. 1996, 665-
666. (m) Abe, T.; Tachibana, Y.; Uematsu, T.; Iwamoto, M. Chem.
Commun. 1995, 1617-1618. (n) Butterworth, A. J.; Clark, J. H.; Walton,
P. H.; Barlow, S. J. Chem. Commun. 1996, 1857-1858. (o) Zhang, Z.;
Suo, J.; Zhang, X.; Li, S. Chem. Commun. 1998, 241-242. (p) Van Rhijin,
W. M.; De Vos, D. E.; Sels, B. F.; Bossaert, W. D.; Jacobs, P. A. Chem.
Commun. 1998, 317-318. (q) Rao, Y. V. S.; De Vos, D. E.; Jacobs, P. A.
Angew. Chem., Int. Ed. Engl. 1997, 36, 2661-2663. (r) Fowler, C. E.;
Burkett, S. L.; Mann, S. Chem. Commun. 1997, 1769-1770. (s) Macquarrie,
D. J.; Jackson, D. B. Chem. Commun. 1997, 1781-1782.
10.1021/ja971637u CCC: $15.00 © 1998 American Chemical Society
Published on Web 11/12/1998