VOL. 47, 2003
STRUCTURE-ACTIVITY RELATIONSHIPS FOR P. FALCIPARUM
159
4. Caffrey, C. R., E. Hansell, K. D. Lucas, L. S. Brinen, A. Alvarez-Hernandez,
J. Cheng, S. L. Gwaltney II, W. R. Roush, Y. D. Stierhof, M. Bogyo, D.
Steverding, and J. H. McKerrow. 2001. Active site mapping, biochemical
properties and subcellular localization of rhodesain, the major cysteine pro-
tease of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol. 118:61–
73.
5. Carretero, J. C., M. Demillequand, and L. Ghosez. 1987. Synthesis of ␣,-
unsaturated sulphonates via the Wittig-Horner reaction. Tetrahedron 43:
5125–5134.
6. Chatterjee, S., M. A. Ator, D. Bozyczko-Coyne, K. Josef, G. Wells, R. Tri-
pathy, M. Iqbal, R. Bihovsky, S. E. Senadhi, S. Mallya, T. M. O’Kane, B. A.
McKenna, R. Siman, and J. P. Mallamo. 1997. Synthesis and biological
activity of a series of potent fluoromethyl ketone inhibitors of recombinant
human calpain I. J. Med. Chem. 40:3820–3828.
7. Cherney, R. J., and L. Wang. 1996. Efficient Mitsunobu reactions with
N-phenylfluorenyl or N-trityl serine esters. J. Org. Chem. 61:2544–2546.
8. Edwards, P. D., D. W. Andisik, C. A. Bryant, B. Ewing, B. Gomes, J. J. Lewis,
D. Rakiewicz, G. Steelman, A. Strimpler, D. A. Trainor, P. A. Tuthill, R. C.
Mauger, C. A. Veale, R. A. Wildonger, J. C. Williams, D. J. Wolanin, and M.
Zottola. 1997. Discovery and biological activity of orally active peptidyl
trifluoromethyl ketone inhibitors of human neutrophil elastase. J. Med.
Chem. 40:1876–1885.
9. Eggleson, K. K., K. L. Duffin, and D. E. Goldberg. 1999. Identification and
characterization of falcilysin, a metallopeptidase involved in hemoglobin
catabolism within the malaria parasite Plasmodium falciparum. J. Biol.
Chem. 274:32411–32417.
10. Enders, D., S. von Berg, and B. Jandeleit. 2000. Diethyl [(phenylsulfonyl)
methyl]phosphonate. Org. Synth. 78:169–175.
11. Feng, D.-M., S. J. Gardell, S. D. Lewis, M. G. Bock, Z. Chen, R. M. Fre-
idinger, A. M. Naylor-Olsen, H. G. Ramjit, R. Woltmann, E. P. Baskin, J. L.
Lynch, R. Lucas, J. A. Shafer, K. B. Dancheck, I.-W. Chen, S.-S. Mao, J. A.
Krueger, T. R. Hare, A. M. Mulichak, and J. P. Vacca. 1997. Discovery of a
novel, selective, and orally bioavailable class of thrombin inhibitors incorpo-
rating aminopyridyl moieties at the P1 position. J. Med. Chem. 40:3726–
3733.
12. Francis, S. E., D. J. Sullivan, Jr., and D. E. Goldberg. 1997. Hemoglobin
metabolism in the malaria parasite Plasmodium falciparum. Annu. Rev.
Microbiol. 51:97–123.
13. Gennari, C., B. Salom, D. Potenza, and A. Williams. 1994. Synthesis of
sulfonamido-pseudopeptides—new chiral unnatural oligomers. Angew.
Chem. Int. Ed. Engl. 33:2067–2069.
14. Hanzlik, R. P., and S. A. Thompson. 1984. Vinylogous amino acid esters: a
new class of inactivators for thiol proteases. J. Med. Chem. 27:711–712.
15. Harris, J. L., B. J. Backes, F. Leonetti, S. Mahrus, J. A. Ellman, and C. S.
Craik. 2000. Rapid and general profiling of protease specificity by using
combinatorial fluorogenic substrate libraries. Proc. Natl. Acad. Sci. USA
97:7754–7759.
16. Kempf, D. J., H. L. Sham, K. C. Marsh, C. A. Flentge, D. Betebenner, B. E.
Green, E. McDonald, S. Vasavanonda, A. Saldivar, N. E. Wideburg, W. M.
Kati, L. Ruiz, C. Zhao, L. Fino, J. Patterson, A. Molla, J. J. Plattner, and
D. W. Norbeck. 1998. Discovery of ritonavir, a potent inhibitor of HIV
protease with high oral bioavailability and clinical efficacy. J. Med. Chem.
41:602–617.
17. Kleinert, H. D., S. H. Rosenberg, W. R. Baker, H. H. Stein, V. Klinghofer, J.
Barlow, K. Spina, J. Polakowski, P. Kovar, J. Cohen, and J. Denissen. 1992.
Discovery of a peptide-based renin inhibitor with oral bioavailability and
efficacy. Science 257:1940–1943.
18. Lambros, C., and J. P. Vandenberg. 1979. Synchronization of Plasmodium
falciparum erythrocytic stages in culture. J. Parasitol. 65:418–420.
19. Liu, S., and R. P. Hanzlik. 1992. Structure-activity relationships for inhibi-
tion of papain by peptide Michael acceptors. J. Med. Chem. 35:1067–1075.
20. McKerrow, J. H., E. Sun, P. J. Rosenthal, and J. Bouvier. 1993. The pro-
teases and pathogenicity of parasitic protozoa. Annu. Rev. Microbiol. 47:
821–853.
21. Musicki, B., and T. S. Widlanski. 1991. Synthesis of nucleoside sulfonates
and sulfones. Tetrahedron Lett. 32:1267–1270.
22. Olson, J. E., G. K. Lee, A. Semenov, and P. J. Rosenthal. 1999. Antimalarial
effects in mice of orally administered peptidyl cysteine protease inhibitors.
Bioorg. Med. Chem. 7:633–638.
compound) (30). However, among very potent inhibitors, ad-
ditional determinants of SAR come into play. Considering our
results, it appears that vinyl sulfonamides and vinyl sulfones
tend to be more active than the vinyl sulfonate esters against
the parasites. Regarding substitution of the aryl ring of vinyl
sulfonate esters, there is a clear pattern of activity against the
parasite cultures in rank order (-OMe Ͼ -H Ͼ -F, contrary to
results of the enzymatic assays. Concerning the P3 substituents,
of the six compounds with the highest antiparasitic activities,
three contained an isonipecotic ester moiety (compounds 328,
341, and 351) while the other three contained a tertiary amine
(compounds 290, 325, and 345). Indeed, compounds contain-
ing the isonipecotic ester moiety were particularly effective
against both the enzymes and cultured parasites. However,
other compounds that exhibited high activity against the en-
zymes did not retain potency against the parasites. For exam-
ple, those compounds containing a prolinol substituent at P3
(compounds 324, 339, 365, 367, and 369) were typically very
potent against the enzymes but showed relatively poor anti-
parasitic activity. The origin of these preferences is not yet clear.
Peptidyl vinyl sulfones were originally developed as inhibi-
tors of papain (14, 19) and were later optimized as specific
inhibitors of human cysteine proteases (3, 23). Related phenyl
vinyl sulfones also inhibit cruzain, a cysteine protease of
Trypanosoma cruzi (31, 32, 35), and one of these compounds is
currently undergoing preclinical studies for the treatment of
Chagas’ disease (34). While the clinical use of peptidyl pro-
tease inhibitors is potentially problematic due to limited bio-
availability or poor pharmacokinetics, there are numerous re-
cent reports of peptidyl inhibitors of renin (17), thrombin (11),
leukocyte elastase (42), neutrophil elastase (8), and human
immunodeficiency virus type 1 protease (2, 16, 40) that are
biologically active after oral administration. Considering these
data, the reported in vivo efficacy of an orally administered
vinyl sulfone against murine malaria (22), and our demonstra-
tion here of marked antimalarial potency, additional evalua-
tion of vinyl sulfonyl derivatives as potential antimalarial cys-
teine protease inhibitors seems appropriate. More broadly, our
data provide the most detailed assessment to date of the SAR
for inhibition of the falcipains and of parasite development and
thereby should aid the progress of peptide- and nonpeptide-
based drug discovery efforts directed against plasmodial cys-
teine proteases.
ACKNOWLEDGMENTS
This work was supported by the National Institutes of Health (grants
AI 35800 and AI 35707) and the Medicines for Malaria Venture.
P.Y.C. was supported by a postdoctoral fellowship from the Susan G.
Komen Breast Cancer Foundation.
REFERENCES
1. Banerjee, R., J. Liu, W. Beatty, L. Pelosof, M. Klemba, and D. E. Goldberg.
2002. Four plasmepsins are active in the Plasmodium falciparum food vacu-
ole, including a protease with an active-site histidine. Proc. Natl. Acad. Sci.
USA 99:990–995.
23. Palmer, J. T., D. Rasnick, J. L. Klaus, and D. Bromme. 1995. Vinyl sulfones
as mechanism-based cysteine protease inhibitors. J. Med. Chem. 38:3193–
3196.
24. Reynolds, R. C., P. A. Crooks, J. A. Maddry, M. S. Akhtar, J. A. Montgomery,
and J. A. Secrist III. 1992. Synthesis of thymidine dimers containing inter-
nucleoside sulfonate and sulfonamide linkages. J. Org. Chem. 57:2983–2985.
25. Ridley, R. G. 2002. Medical need, scientific opportunity and the drive for
antimalarial drugs. Nature 415:686–693.
26. Rosenthal, P. J., J. H. McKerrow, M. Aikawa, H. Nagasawa, and J. H. Leech.
1988. A malarial cysteine proteinase is necessary for hemoglobin degrada-
tion by Plasmodium falciparum. J. Clin. Investig. 82:1560–1566.
27. Rosenthal, P. J. 2002. Hydrolysis of erythrocyte proteins by proteases of
malaria parasites. Curr. Opin. Hematol. 9:140–145.
2. Bold, G., A. Fassler, H. G. Capraro, R. Cozens, T. Klimkait, J. Lazdins, J.
Mestan, B. Poncioni, J. Rosel, D. Stover, M. Tintelnot-Blomley, F. Acemoglu,
W. Beck, E. Boss, M. Eschbach, T. Hurlimann, E. Masso, S. Roussel, K.
Ucci-Stoll, D. Wyss, and M. Lang. 1998. New aza-dipeptide analogues as
potent and orally absorbed HIV-1 protease inhibitors: candidates for clinical
development. J. Med. Chem. 41:3387–3401.
3. Bro¨mme, D., J. L. Klaus, K. Okamoto, D. Rasnick, and J. T. Palmer. 1996.
Peptidyl vinyl sulfones: a new class of potent and selective cysteine protease
inhibitors. S2P2 specificity of human cathepsin O2 in comparison with cathe-
psins S and L. Biochem. J. 315:85–89.