10.1002/anie.201911652
Angewandte Chemie International Edition
RESEARCH ARTICLE
[5]
a) Y. Ie, T. Hirose, H. Nakamura, M. Kiguchi, N. Takagi, M. Kawai,
Y. Aso, J. Am. Chem. Soc. 2011, 133, 3014-3022; b) J. Šebera, V.
Kolivoška, M. Valášek, J. Gasior, R. Sokolová, G. Mészáros, W.
Hong, M. Mayor, M. Hromadová, J. Phys. Chem. C 2017, 121,
12885-12894; c) Z. Wei, X. Wang, A. Borges, M. Santella, T. Li, J.
K. Sørensen, M. Vanin, W. Hu, Y. Liu, J. Ulstrup, G. C. Solomon,
Q. Chi, T. Bjørnholm, K. Nørgaard, B. W. Laursen, Langmuir 2014,
30, 14868-14876; d) T. C. Pijper, O. Ivashenko, M. Walko, P.
Rudolf, W. R. Browne, B. L. Feringa, J. Phys. Chem. C 2015, 119,
3648-3657; e) M. Valášek, K. Edelmann, L. Gerhard, O. Fuhr, M.
Lukas, M. Mayor, J. Org. Chem. 2014, 79, 7342-7357; f) R. J.
Davidson, D. C. Milan, O. A. Al-Owaedi, A. K. Ismael, R. J. Nichols,
S. J. Higgins, C. J. Lambert, D. S. Yufit, A. Beeby, RSC Adv. 2018,
8, 23585-23590; g) F. Ishiwari, G. Nascimbeni, E. Sauter, H. Tago,
Y. Shoji, S. Fujii, M. Kiguchi, T. Tada, M. Zharnikov, E. Zojer, T.
Fukushima, J. Am. Chem. Soc. 2019, 141, 5995-6005; h) V.
Kolivoška, J. Šebera, T. Sebechlebská, M. Lindner, J. Gasior, G.
Mészáros, M. Mayor, M. Valášek, M. Hromadová, Chem. Commun.
2019, 55, 3351-3354; i) Y. Ie, K. Tanaka, A. Tashiro, S. K. Lee, H.
R. Testai, R. Yamada, H. Tada, Y. Aso, J. Phys. Chem. Lett. 2015,
6, 3754-3759.
head group in the order pP > B > mP. For Au−SAM−graphene
junctions, similar trends were observed but GM increased by a
factor of ca. 4. Charge transport calculations showed that the
carbazole units play little or no role in the conductance pathway
of the molecules, and that electronic coupling to the surface is
through the benzene or pyridine ring of the anchoring unit. Such
decoupling of surface binding and electronic coupling could
enable the use of unconventional functional groups, which may
afford strong electronic coupling but only weak physical binding,
in tandem with ancillary strong anchor groups with poor
electronic coupling. Despite the lack of strong electronic
coupling between the tetrapods and the gold surface,
comparison with the literature shows that their conductance is
comparable to existing tripodal systems. Ongoing research in
our laboratories is exploring ways to enhance the electronic
coupling, and therefore molecular conductance, of systems
based on a tetrapodal anchor motif, while retaining a convenient
synthetic approach.
[6]
a) D. Kato, H. Sakai, N. V. Tkachenko, T. Hasobe, Angew. Chem.
Int. Ed. 2016, 55, 5230-5234; b) S.-E. Zhu, Y.-M. Kuang, F. Geng,
J.-Z. Zhu, C.-Z. Wang, Y.-J. Yu, Y. Luo, Y. Xiao, K.-Q. Liu, Q.-S.
Meng, L. Zhang, S. Jiang, Y. Zhang, G.-W. Wang, Z.-C. Dong, J. G.
Hou, J. Am. Chem. Soc. 2013, 135, 15794-15800.
[7]
[8]
[9]
K. Nikitin, E. Lestini, M. Lazzari, S. Altobello, D. Fitzmaurice,
Langmuir 2007, 23, 12147-12153.
C. S. Park, H. J. Lee, A. C. Jamison, T. R. Lee, ACS Appl. Mater.
Interfaces 2016, 8, 5586-5594.
a) S. V. Aradhya, J. S. Meisner, M. Krikorian, S. Ahn, R.
Parameswaran, M. L. Steigerwald, C. Nuckolls, L. Venkataraman,
Nano Lett. 2012, 12, 1643-1647; b) C. R. Arroyo, S. Tarkuc, R.
Frisenda, J. S. Seldenthuis, C. H. M. Woerde, R. Eelkema, F. C.
Grozema, H. S. J. van der Zant, Angew. Chem. Int. Ed. 2013, 52,
3152-3155.
Experimental Section
Experimental details are given in the Supporting Information (SI). This
includes synthetic procedures and characterisation, NMR spectra, X-ray
crystallographic data, microscopy procedures and computational
methods.
[10]
[11]
[12]
[13]
P. Angelova, E. Solel, G. Parvari, A. Turchanin, M. Botoshansky, A.
Gölzhäuser, E. Keinan, Langmuir 2013, 29, 2217-2223.
N. I. Baranova, V. I. Shishkina, Chem. Heterocycl. Compd. 1971, 7,
1009-1010.
C.-H. Chen, T.-H. Hu, T.-C. Huang, Y.-L. Chen, Y.-R. Chen, C.-C.
Cheng, C.-T. Chen, Chem. Eur. J. 2015, 21, 17379-17390.
J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P.
Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 2002, 14,
2745.
S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553-566.
P. Moreno-García, M. Gulcur, D. Z. Manrique, T. Pope, W. Hong,
V. Kaliginedi, C. Huang, A. S. Batsanov, M. R. Bryce, C. Lambert,
T. Wandlowski, J. Am. Chem. Soc. 2013, 135, 12228-12240.
a) R. Garcia, R. V. Martinez, J. Martinez, Chem. Soc. Rev. 2006,
35, 29-38; b) N. A. Amro, S. Xu, G. Y. Liu, Langmuir 2000, 16,
3006-3009.
a) T. P. Weihs, Z. Nawaz, S. P. Jarvis, J. B. Pethica, Appl. Phys.
Lett. 1991, 59, 3536-3538; b) N. A. Burnham, R. J. Colton, H. M.
Pollock, Phys. Rev. Lett. 1993, 70, 247-247; c) E. Gomar-Nadal, G.
K. Ramachandran, F. Chen, T. Burgin, C. Rovira, D. B. Amabilino,
S. M. Lindsay, J. Phys. Chem. B 2004, 108, 7213-7218.
X. Zhao, C. Huang, M. Gulcur, A. S. Batsanov, M. Baghernejad, W.
Hong, M. R. Bryce, T. Wandlowski, Chem. Mater. 2013, 25, 4340-
4347.
Acknowledgements
We thank EPSRC for support (grants EP/P027520/1,
EP/P027156/1, EP/N017188/1 and EP/N03337X/1). This work
was additionally supported by the European Commission
through the FET Open projects 767187 (QuIET) and 766853
(EFINED) and the EU project “Bac-to-Fuel”. H.S. acknowledges
the UKRI for Future Leaders Fellowship no. MR/S015329/1 and
the Leverhulme Trust for Early Career Fellowship no. ECF-2017-
186. We thank Christopher J. B. Ford and Jan Girovsky
(University of Cambridge) for helpful discussions.
[14]
[15]
[16]
[17]
Keywords: molecular electronics • monolayers • scanning probe
microscopy • oligo(phenylene-ethynylene) • DFT calculations
[18]
[19]
[20]
A. Borges, E.-D. Fung, F. Ng, L. Venkataraman, G. C. Solomon, J.
Phys. Chem. Lett. 2016, 7, 4825-4829.
a) J. Ferrer, C. J. Lambert, V. M. García-Suárez, D. Z. Manrique, D.
Visontai, L. Oroszlany, R. Rodríguez-Ferradás, I. Grace, S. W. D.
Bailey, K. Gillemot, S. Hatef, L. A. Algharagholy, New J. Phys.
2014, 16, 093029; b) H. Sadeghi, Nanotechnology 2018, 29,
373001.
[1]
a) M. Valášek, M. Mayor, Chem. Eur. J. 2017, 23, 13538-13548; b)
M. Valášek, M. Lindner, M. Mayor, Beilstein J. Nanotechnol. 2016,
7, 374-405; c) S. Rittikulsittichai, C. S. Park, A. C. Jamison, D.
Rodriguez, O. Zenasni, T. R. Lee, Langmuir 2017, 33, 4396-4406;
d) C. Huang, S. Chen, K. Baruël Ørnsø, D. Reber, M. Baghernejad,
Y. Fu, T. Wandlowski, S. Decurtins, W. Hong, K. S. Thygesen, S.-
X. Liu, Angew. Chem. Int. Ed. 2015, 54, 14304-14307; e) M. Halik,
A. Hirsch, Adv. Mater. 2011, 23, 2689-2695.
[21]
X. Liu, S. Sangtarash, D. Reber, D. Zhang, H. Sadeghi, J. Shi, Z.-
Y. Xiao, W. Hong, C. J. Lambert, S.-X. Liu, Angew. Chem. Int. Ed.
2017, 56, 173-176.
[22]
[23]
K. Liu, G. Li, X. Wang, F. Wang, J. Phys. Chem. C 2008, 112,
4342-4349.
C. R. Parker, E. Leary, R. Frisenda, Z. Wei, K. S. Jennum, E.
Glibstrup, P. B. Abrahamsen, M. Santella, M. A. Christensen, E. A.
Della Pia, T. Li, M. T. Gonzalez, X. Jiang, T. J. Morsing, G. Rubio-
Bollinger, B. W. Laursen, K. Nørgaard, H. van der Zant, N. Agrait,
M. B. Nielsen, J. Am. Chem. Soc. 2014, 136, 16497-16507.
[2]
a) N. Xin, J. Guan, C. Zhou, X. Chen, C. Gu, Y. Li, M. A. Ratner, A.
Nitzan, J. F. Stoddart, X. Guo, Nat. Rev. Phys. 2019, 1, 211-230;
b) T. A. Su, M. Neupane, M. L. Steigerwald, L. Venkataraman, C.
Nuckolls, Nat. Rev. Mater. 2016, 1, 16002.
a) S. Park, H. J. Yoon, Nano Lett. 2018, 18, 7715-7718; b) Y. Kim,
W. Jeong, K. Kim, W. Lee, P. Reddy, Nat. Nanotechnol. 2014, 9,
881.
[3]
[4]
L. Cui, R. Miao, K. Wang, D. Thompson, L. A. Zotti, J. C. Cuevas,
E. Meyhofer, P. Reddy, Nat. Nanotechnol. 2018, 13, 122-127.
This article is protected by copyright. All rights reserved.