SCHEME 1. MW-Assisted CF Reactions
for the synthesis of pyridines based upon the Bohlmann-
Rahtz (B-R)11 reaction. The cyclodehydration of amino-
dienone 5 can be effected using conductive heating,12 and
with a Lewis13 or Brønsted14 acid catalyst, to give 2,3,6-
trisubstituted pyridine 6 directly and with total regio-
control, and this transformation has been applied in the
synthesis of pyridine-containing thiopeptide antibiotics,15
and their derivatives,16 as well as pyrido[2,3-d]pyrim-
idines,17 heterocyclic amino acids,18 nonsteroidal antiin-
flammatory agents,19 and combinatorial pyridine librar-
ies.20 Aminodienone 5 was prepared according to known
procedures12 and cyclodehydrated with CF processing
under homogeneous conditions in toluene-acetic acid (5:
1) over sand,21 comparing the results to batch experi-
ments carried out in a sealed tube and to the correspond-
ing homogeneous CF process with a Teflon heating coil
(Scheme 2). Under conditions that gave efficient conver-
sion (>98%) to pyridine 6, the processing rates of mate-
rial using our glass tube reactor were considerably higher
(Table 1). Additionally, CF reactions run at the same flow
rate used less magnetron energy in a glass tube than in
the heating coil (Table 1, Figures 3 and 4, and Supporting
Information), demonstrating that a glass tube CF reactor
FIGURE 1. Flow cell schematic.
FIGURE 2. Schematic diagram of the CF reactor.
thiazole 1 to give hydrochloride 29 and a Fischer indole
synthesis10 of 4 from hydrazine 3 and cyclohexanone in
acetic acid, in both cases using sand as the packing agent.
Under these conditions efficient conversions were achieved
at 150 °C, processing 1 g in 15-30 min, to give alcohol 2
and indole 4 in 85% and 91% yield, respectively (Scheme
1).
(11) Bohlmann, F.; Rahtz, D. Chem. Ber. 1957, 90, 2265.
(12) Bagley, M. C.; Brace, C.; Dale, J. W.; Ohnesorge, M.; Phillips,
N. G.; Xiong, X.; Bower, J. J. Chem. Soc., Perkin Trans. 1 2002, 1663.
(13) (a) Bagley, M. C.; Dale, J. W.; Hughes, D. D.; Ohnesorge, M.;
Phillips, N. G.; Bower, J. Synlett 2001, 1523. (b) Bagley, M. C.; Glover,
C.; Merritt, E. A.; Xiong, X. Synlett 2004, 811.
(14) Bagley, M. C.; Dale, J. W.; Bower, J. Synlett 2001, 1149.
(15) (a) Bagley, M. C.; Bashford, K. E.; Hesketh, C. L.; Moody, C. J.
J. Am. Chem. Soc. 2000, 122, 3301. (b) Moody, C. J.; Bagley, M. C.
Chem. Commun. 1998, 2049.
(16) (a) Bagley, M. C.; Dale, J. W.; Xiong, X.; Bower, J. Org. Lett.
2003, 5, 4421. (b) Bagley, M. C.; Chapaneri, K.; Xiong, X. Tetrahedron
Lett. 2004, 45, 6121. (c) Bagley, M. C.; Xiong, X. Org. Lett. 2004, 6,
3401.
(17) (a) Hughes, D. D.; Bagley, M. C. Synlett 2002, 1332. (b) Bagley,
M. C.; Hughes, D. D.; Lloyd, R.; Powers, V. E. C. Tetrahedron Lett.
2001, 42, 6585.
(18) (a) Adamo, M. F. A.; Adlington, R. M.; Baldwin, J. E.; Pritchard,
G. J.; Rathmell, R. E. Tetrahedron 2003, 59, 2197. (b) Adlington, R.
M.; Baldwin, J. E.; Catterick, D.; Pritchard, G. J.; Tang, L. T. J. Chem.
Soc., Perkin Trans. 1 2000, 2311. (c) Baldwin, J. E.; Catterick, D.;
Pritchard, G. J.; Tang, L. T. J. Chem. Soc., Perkin Trans. 1 2000, 303.
(d) Moody, C. J.; Bagley, M. C. Synlett 1998, 361. (e) Bagley, M. C.;
Dale, J. W.; Jenkins, R. L.; Bower, J. Chem. Commun. 2004, 102.
(19) Schroeder, E.; Lehmann, M.; Boettcher, I. Eur. J. Med. Chem.
1979, 14, 309.
(20) (a) Bagley, M. C.; Dale, J. W.; Ohnesorge, M.; Xiong, X.; Bower,
J. J. Comb. Chem. 2003, 5, 41. (b) Bashford, K. E.; Burton, M. B.;
Cameron, S.; Cooper, A. L.; Hogg, R. D.; Kane, P. D.; MacManus, D.
A.; Matrunola, C. A.; Moody, C. J.; Robertson, A. A. B.; Warne, M. R.
Tetrahedron Lett. 2003, 44, 1627.
(21) The glass tube was filled with standard quartz sand, 40-100
mesh, suitable for use in chromatography. When aminodienone 5 was
irradiated in toluene (without acetic acid) in the presence and absence
of sand in a sealed tube, no appreciable difference was observed (13%
versus 5% conversion, respectively), indicating that the sand has a
negligible (if any) effect on the cyclodehydration.
Following the success of these flow reactions, efforts
were made to develop a new microwave-assisted process
(9) For comparison, a solution of 1‚HCl (170 mg, 1.0 mmol) in H2O
(2 mL) was irradiated at 150 °C in a sealed glass tube (150 W) for 10
min and evaporated in vacuo to give 2‚HCl (151 mg, >98%). Compa-
rable conductive heating procedures carried out at 150 °C in a sealed
tube for 12 min, or at reflux for 30 min, gave thiazole 2‚HCl (90% or
85%, respectively, by HPLC). For related hydrolysis experiments using
conductive heating, see: (a) Houssin, R.; Pommery, J.; Salauen, M.-
C.; Deweer, S.; Goossens, J.-F.; Chavatte, P.; Henichart, J.-P. J. Med.
Chem. 2002, 45, 533. (b) Hagen, S. E.; Domagala, J.; Gajda, C.;
Lovdahl, M.; Tait, B. D.; Wise, E.; Holler, T.; Hupe, D.; Nouhan, C.;
Urumov, A.; Zeikus, G.; Zeikus, E.; Lunney, E. A.; Pavlovsky, A.;
Gracheck, S. J.; Saunders: J.; VanderRoest, S.; Brodfuehrer, J. Med.
Chem. 2001, 44, 2319.
(10) For comparison, a solution of cyclohexanone (196 mg, 2 mmol)
and 3 (220 mg, 2.2 mmol) in AcOH (4 mL) was irradiated at 150 °C in
a sealed glass tube (150 W) for 10 min and then evaporated in vacuo.
The residue was extracted with EtOAc, washed with H2O, aqueous
NaHCO3 solution (2 N) and brine, dried (MgSO4), and evaporated in
vacuo to give 4 (212 mg, 62%), mp 113-115 °C. The comparable
conductive heating procedure carried out at 150 °C in a sealed tube
for 10 min gave 4 (94%), mp 115-117 °C, after purification by column
chromatography on SiO2 eluting with light petroleum-EtOAc (9:1).
For related Fischer indole syntheses, see: (a) An, J.; Bagnell, L.;
Cablewski, T.; Strauss, C. R.; Trainor, R. W. J. Org. Chem. 1997, 62,
2505. (b) Robinson, B. Chem. Rev. 1969, 69, 227. (c) Hughes, D. L.
Org. Prep. Proced. Int. 1993, 25, 607. (d) Franco, L. H.; Palermo, J. A.
Chem. Pharm. Bull. 2003, 51, 975. (e) Lipin’ska, T. Chem. Heterocycl.
Compd. 2001, 37, 231. (f) Lipin’ska, T.; Guibe-Jampel, E.; Petit, A.;
Loupy, A. Synth. Commun. 1999, 29, 1349.
7004 J. Org. Chem., Vol. 70, No. 17, 2005