Green Chemistry
Paper
between 7.7 and 8.0 mm. Energy Dispersive X-ray (EDX) ana- 11 B. Pal, S. Ikeda, H. Kominami, Y. Kera and B. Ohtani,
lysis was performed with an Oxford INCA II setup.
J. Catal., 2003, 217, 152–159.
12 S. Füldner, R. Mild, H. Siegmund, J. Schroeder, M. Gruber
General procedure for the TiO catalyzed arylation in continu-
and B. König, Green Chem., 2010, 12, 400–406.
2
ous-flow
13 M. Cherevatskaya, M. Neumann, S. Füldner, C. Harlander,
S. Kümmel, S. Dankesreiter, A. Pfitzner, K. Zeitler and
B. König, Angew. Chem., Int. Ed., 2012, 51, 4062–4066.
Aryldiazonium tetrafluoroborates 1a–h were synthesized
according to literature procedures (for details, see the ESI†).
The appropriate salt was dissolved in a solvent mixture of
EtOH and the corresponding heterocycle (furan, thiophene,
pyridine or furfural, v : v 1 : 1, 50 mM). The resulting mixture
was stirred until complete solvation of the diazonium salt.
Then, the mixture was pumped into the falling film microreac-
tor for collapsing down into the microchannels. As soon as the
reaction solution equally rinsed all microchannels irradiation
was started by switching on the LED array connected to the
FFMR. The crude reaction mixture was collected and filtered
over a short plug of silica and flushed with ethyl acetate. If
necessary, the final products were further purified using flash
column chromatography on silica gel (eluent cyclohexane/ethyl
acetate).
1
1
1
1
1
4 X. Lang, J. Zhao and X. Chen, Angew. Chem., Int. Ed., 2016,
5, 4697–4700.
5 X. Lang, W. Hao, W. Leow, S. Li, J. Zhao and X. Chen,
Chem. Sci., 2015, 6, 5000–5006.
5
6 J. Zoller, D. Fabry and M. Rueping, ACS Catal., 2015, 5,
3900–3904.
7 D. Cambié, C. Bottecchia, N. Straathof, V. Hessel and
T. Noël, Chem. Rev., 2016, 116, 10276–10341.
8 T. Rehm, in Flow Chemistry - Applications, ed. F. Darvas, G.
Dorman and V. Hessel, DeGruyter, Berlin, 2014, ch. 3,
p. 64.
1
2
2
9 T. Van Gerven, G. Mul, J. Moulijn and A. Stankiewicz,
Chem. Eng. Process., 2007, 46, 781–789.
0 B. Hook, W. Dohle, P. Hirst, M. Pickworth, M. Berry and
K. Booker-Milburn, J. Org. Chem., 2005, 70, 7558.
1 L. Elliot, J. Knowles, P. Koovits, K. Maskill, M. Ralph,
G. Lejeune, L. Edwards, R. Robinson, I. Clemens, B. Cox,
D. Pascoe, G. Koch, M. Eberle, M. Berry and K. Booker-
Milburn, Chem. – Eur. J., 2014, 20, 15226.
Acknowledgements
T. H. R. would like to thank Dr Raphael Thiermann for TEM
analysis, Anja Himmelsbach for SEM and EDX analysis and
Gitta Hasert for nitrogen physisorption analysis (all 22 J. Schachtner, P. Bayer and A. Jacobi von Wangelin,
Fraunhofer ICT-IMM). This research has received funding
Beilstein J. Org. Chem., 2016, 12, 1798–1811.
from the European Research Council under the European 23 G. Kreisel, S. Meyer, D. Tietze, T. Fidler, G. Gorges,
Union’s Seventh Framework Programme (FP/2007-2013)/ERC
A. Kirsch, B. Schäfer and S. Rau, Chem. Ing. Tech., 2007, 79,
Grant Agreement no. 617044 (SunCatChem).
153.
2
4 G. Held, Introduction to Light Emitting Diode Technology and
Applications, CRC Press, Boca Raton, 2009.
5 W. Ehrfeld, V. Hessel and H. Löwe, Microreactors, Wiley-
VCH, Weinheim, 2000.
2
Notes and references
1
Y. Shiraishi and T. Hirai, J. Photochem. Photobiol., C, 2008, 26 V. Hessel, A. Renken, J. Schouten and J.-I. Yoshida, Micro
, 157–170. Process Engineering, Wiley-VCH, Weinheim, 2009.
M. Chong, B. Jin, C. Chow and C. Saint, Water Res., 2010, 27 J.-N. Tourvieille, F. Bornette, R. Philippe, Q. Vanderberghe
9
2
4
4, 2997.
and C. de Bellefon, Chem. Eng. J., 2013, 227, 182.
28 C. Mallia and I. Baxendale, Org. Process Res. Dev., 2016, 20,
327.
29 Y. Matsushita, N. Ohbab, S. Kumadab, K. Sakeda, T. Suzuki
and T. Ichimura, Chem. Eng. J., 2008, 135S, S303–S308.
30 S. Fuse, N. Tanabe, M. Yoshida, H. Yoshida, T. Doi and
T. Takahashi, Chem. Commun., 2010, 46, 8722–8724.
3
4
N. Hoffmann, Aust. J. Chem., 2015, 68, 1621–1639.
A. Molinari, M. Montoncello, H. Rezala and A. Maldotti,
Photochem. Photobiol. Sci., 2009, 8, 613–619.
N. Li, X. Lang, W. Ma, H. Ji, C. Chen and J. Zhao, Chem.
Commun., 2013, 49, 5034–5036.
5
6
C. Bottecchia, N. Erdmann, P. Tijssen, L.-G. Milroy,
L. Brunsveld, V. Hessel and T. Noël, ChemSusChem, 2016, 9, 31 C. Park, R. Maurya, J. Lee and D.-P. Kim, Lab Chip, 2011,
1
781–1785.
11, 1941–1945.
7
8
C. Vila and M. Rueping, Green Chem., 2013, 15, 2056–2059.
V. Bhat, P. Duspara, S. Seo, N. Bakar and M. Greaney,
Chem. Commun., 2015, 51, 4383–4385.
32 O. Shvydkiv, A. Yavorskyy, S. Tan, K. Nolan, N. Hoffmann,
A. Youssef and M. Oelgemöller, Photochem. Photobiol. Sci.,
2011, 10, 1399–1404.
9
M. Rueping, J. Zoller, D. Fabry, K. Poscharny, R. Koenigs, 33 K. Yeong, A. Gavriilidis, R. Zapf and V. Hessel, Chem. Eng.
T. Weirich and J. Mayer, Chem. – Eur. J., 2012, 18, 3478–
481.
0 G. Palmisano, E. García-López, G. Marcí, V. Loddo,
Sci., 2004, 59, 3491.
34 M. Zanfir, A. Gavriilidis, C. Wille and V. Hessel, Ind. Eng.
Chem. Res., 2005, 44, 1742.
3
1
S. Yurdakal, V. Augugliaro and L. Palmisano, Chem. 35 H. Zhang, G. Chen, J. Yue and Q. Yuan, AIChE J., 2009, 55,
Commun., 2010, 46, 7074–7089. 1110.
This journal is © The Royal Society of Chemistry 2017
Green Chem.