PHOSPHORUS, SULFUR, AND SILICON AND THE RELATED ELEMENTS
3
Moiety as a PH Protecting Group in the Synthesis of a
Phosphino Macrocycle That Contains a Secondary-Phosphino
Ligating Site. Inorg. Chem. 1985, 24, 1613–1616. DOI: 10.1021/
Conclusions
Thus, a new method for the synthesis of primary and sec-
ondary arylphosphines, namely mesitylphosphine MesPH2
and dimesitylphosphine Mes2PH, respectively, directly from
[11] Ficks, A.; Martinez-Botella, I.; Stewart, B.; Harrington, R. W.;
Clegg, W.; Higham, L. J. Taming Functionality: Easy-to-Handle
Chiral Phosphiranes. Chem. Commun. 2011, 47, 8274–8276.
[12] Ficks, A.; Hiney, R. M.; Harrington, R. W.; Gilheany, D. G.;
Higham, L. J. MOP-Phosphonites: A Novel Ligand Class for
Asymmetric Catalysis. Dalton Trans. 2012, 41, 3515–3522. DOI:
[13] Ficks, A.; Harrington, R. W.; Higham, L. J. Chiral MOP-
Phosphonite Ligands: Synthesis, Characterisation and
Interconversion of g1,g6-(r-P, p-arene) Chelated Rhodium(I)
Complexes. Dalton Trans. 2013, 42, 6302–6305. DOI: 10.1039/
[14] Fleming, J. T.; Ficks, A.; Waddell, P. G.; Harrington, R. W.;
Higham, L. J. The Design of Second Generation MOP-
Phosphonites: Efficient Chiral Hydrosilylation of Functionalised
Styrenes. Dalton Trans. 2016, 45, 1886–1890.
phosphine
PH3
and
organonickel
r-complex
[NiBr(Mes)(bpy)] has been elaborated. The method involves
the use of P-H containing precursors as the starting reagents
and avoids the use and formation of ecologically dangerous
chloro-derivatives. This can be considered as a new powerful
tool for the preparation of organophosphorus compounds
containing C–P bonds. The extension of the range of syn-
thetic possibilities of organonickel r-complexes of this type,
including the preparation of asymmetric organic phosphines
in catalytic conditions, is currently in the progress.
Disclosure statement
No potential conflict of interest was reported by the authors.
[15] Nell, B. P.; Tyler, D. R. Synthesis, Reactivity, and Coordination
Chemistry of Secondary Phosphines. Coord. Chem. Rev. 2014,
279, 23–42.
Funding
[16] Adjabeng, G.; Brenstrum, T.; Wilson, J.; Frampton, C.;
Robertson, A.; Hillhouse, J.; McNulty, J.; Capretta, A. Novel
Class of Tertiary Phosphine Ligands Based on a Phospha-
Adamantane Framework and Use in the Suzuki Cross-Coupling
Reactions of Aryl Halides under Mild Conditions. Org. Lett.
2003, 5, 953–955.
This work is financially supported by the Russian Science Foundation
(project 18-13-00442).
[17] Allen, D. W. Phosphines and Related C-P Bonded Compounds.
Organophosphorus Chem. 2016, 45, 1–50. DOI: 10.1039/
[18] Gafurov, Z. N.; Kagilev, A. A.; Kantyukov, A. O.; Sinyashin,
O. G.; Yakhvarov, D. G. Hydrogenation Reaction Pathways in
Chemistry of White Phosphorus. Pure Appl. Chem. 2019, 91,
[19] Yakhvarov, D. G.; Trofimova, E. A.; Rizvanov, I. K.; Fomina,
O. S.; Sinyashin, O. G. Electrochemical Synthesis and Catalytic
Activity of Organonickel r-Complexes. Russ. J. Electrochem.
[20] Yakhvarov, D. G.; Kvashennikova, S. V.; Sinyashin, O. G.
Reactions of Activated Organonickel r-Complexes with
Elemental (White) Phosphorus. Russ. Chem. Bull. 2013, 62,
2472–2476.
[21] Gafurov, Z. N.; Sinyashin, O. G.; Yakhvarov, D. G.
Electrochemical Methods for Synthesis of Organoelement
Compounds and Functional Materials. Pure Appl. Chem. 2017,
References
[1] Peruzzini, M.; Gonsalvi, L. Phosphorus Compounds: Advanced
Tools in Catalysis and Material Sciences. Springer: Berlin, 2011.
[2] Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M. Benign Chlorine-
Free Approaches to Organophosphorus Compounds. In
Chemistry Beyond Chlorine; Tundo, P., He, L.N., Lokteva, E.,
Mota, C., eds., Springer: Cham, 2016; pp. 97–136. DOI: 10.
[3] Quin, L. D. A Guide to Organophosphorus Chemistry. Wiley:
New York, 2000. ISBN: 978-0- 471-31824-8.
[4] Katti, K. V.; Gali, H.; Smith, C. J.; Berning, D. E. Design and
Development of Functionalized Water-Soluble Phosphines:
Catalytic and Biomedical Implications. Acc. Chem. Res. 1999,
[5] Gali, H.; Hoffman, T. J.; Sieckman, G. L.; Owen, N. K.; Katti,
K. V.; Volkert, W. A. Synthesis, Characterization, and Labeling
with 99mTc/188Re of Peptide Conjugates Containing a Dithia-
Bisphosphine Chelating Agent. Bioconjugate Chem. 2001, 12,
[6] Dorn, H.; Singh, R. A.; Massey, J. A.; Lough, A. J.; Manners, I.
Rhodium Catalyzed Formation of Phosphorus–Boron Bonds:
Synthesis of the First High Molecular Weight Poly
(Phosphinoborane). Angew. Chem. Int. Ed. 1999, 38,
[22] Gafurov, Z. N.; Musin, L. I.; Sakhapov, I. F.; Babaev, V. M.;
Musina, E. I.; Karasik, A. A.; Sinyashin, O. G.; Yakhvarov,
D. G. The Formation of Secondary Arylphosphines in the
Reaction of Organonickel r-Complex [NiBr(Mes)(bpy)], Where
Mes ¼ 2,4,6- Trimethylphenyl, bpy ¼ 2,2’-Bipyridine, with
Phenylphosphine. Phosphorus Sulfur Silicon Relat. Elem. 2016,
191, 1475–1477.
3321–3323.
DOI:
[23] Yakhvarov, D. G.; Khusnuriyalova, A. F.; Sinyashin, O. G.
Electrochemical Synthesis and Properties of Organonickel
r-Complexes. Organometallics 2014, 33, 4574–4589. DOI: 10.
[24] Klein, A.; Budnikova, Y. H.; Sinyashin, O. G. Electron Transfer
in Organonickel Complexes of a-Diimines: Versatile Redox
Catalysts for C–C or C–P Coupling Reactions – A Review. J.
[25] Yakhvarov, D. G.; Tazeev, D. I.; Sinyashin, O. G.; Giambastiani,
G.; Bianchini, C.; Segarra, A. M.; L€onnecke, P.; Hey-Hawkins,
E. Electrochemical Synthesis of the r-Aryl Complex
[NiBr(Mes)(bpy)] and Its Use as Catalyst Precursor for the
[7] Limburg, C.; Gomez-Ruiz, S.; Hey-Hawkins, E. A Sodium
Ferrocenyl-Phosphanide Polymer Based on Racemic Primary
Aminoalkyl (Bisphosphanyl) Ferrocene. Dalton Trans. 2010, 39,
7217–3219.
[8] Maier, L. Preparation and Properties of Primary, Secondary,
and Tertiary Phosphines. Prog. Inorg. Chem. 1963, 5, 27–210.
[9] Hanaya, T.; Yamamoto, H. Synthesis and Structural Analysis of
4-Deoxy-4-(Hydroxyphosphinyl and Phenylphosphinyl)-D-
Ribofuranoses. Bull. Chem. Soc. Jpn. 1989, 62, 2320–2327.
[10] Kyba, E. P.; Liu, S. T. Phosphino Macrocycles. 140. Synthesis of
Unusual Phosphine Ligands. Use of the 1-Naphthylmethyl