Communication
ChemComm
Table 2 Formation of unsymmetrical iminesa
Support from the Indo-French Centre for the Promotion of
Advanced Research (IFCPAR)/Centre Franco-Indien pour la
´
Promotion de la Recherche Avancee (CEFIPRA) is gratefully
acknowledged (Project no. 4705-1). The TEM-team platform
(CEA, iBiTec-S) is acknowledged for help with TEM images.
The ‘‘Service de Chimie Bioorganique et de Marquage’’ belongs
to the Laboratory of Excellence in Research on Medication and
Innovative Therapeutics (ANR-10-LABX-0033-LERMIT).
Entry
1
Amine 3
Imine 4
4/2ab
40 : 60c
55 : 45d
Notes and references
1 R. D. Patil and S. Adimurthy, Asian J. Org. Chem., 2013, 2, 726.
2 M. Largeron, Eur. J. Org. Chem., 2013, 5225.
3 E. Zhang, H. Tian, S. Xu, X. Yu and Q. Xu, Org. Lett., 2013, 15, 2704.
4 R. D. Patil and S. Adimurthy, Adv. Synth. Catal., 2011, 353, 1695.
5 X. Jin, Y. Liu, Q. Lu, D. Yang, J. Sun, S. Qin, J. Zhang, J. Shen, C. Chu
and R. Liu, Org. Biomol. Chem., 2013, 11, 3776.
2
3
80 : 20
90 : 10
6 N. Li, X. Lang, W. Ma, H. Ji, C. Chen and J. Zhao, Chem. Commun.,
2013, 49, 5034.
7 H. Huang, J. Huang, Y.-M. Liu, H.-Y. He, Y. Cao and K.-N. Fan, Green
Chem., 2012, 14, 930.
4
499 : 1
8 A. E. Wendlandt and S. S. Stahl, Org. Lett., 2012, 14, 2850.
9 M. Largeron and M.-B. Fleury, Science, 2013, 339, 43.
10 M. Largeron and M.-B. Fleury, Angew. Chem., Int. Ed., 2012, 51, 5409.
11 H. Yuan, W.-J. Yoo, H. Miyamura and S. Kobayashi, J. Am. Chem.
Soc., 2012, 134, 13970.
a
Conditions: 1a (0.1 mmol), 3 (0.2 mmol), AuONT (200 mL of a 0.5 mM
suspension in MeOH, 0.1 mol%), THAP (3 mol%), MeOH (1 mL), room
temp., air. b Determined by 1H-NMR after full consumption of 1a. c Reaction
run with 1 equiv. of p-anisidine. d Reaction run with 3 equiv. of p-anisidine.
`
12 (a) J. John, E. Gravel, A. Hagege, H. Li, T. Gacoin and E. Doris, Angew.
Chem., Int. Ed., 2011, 50, 7533; (b) J. John, E. Gravel, I. N. N. Namboothiri
and E. Doris, Nanotech. Rev., 2012, 1, 515; (c) R. Kumar, E. Gravel,
the classical imine 2a along with the expected heterocoupling
product 4a in a 40 : 60 ratio. Increasing the amount of 3a to
3 equivalents permitted to improve the formation of 4a as it became
the major product (4a/2a 55 : 45) (entry 1). a-Methylbenzylamine
reacted more efficiently than p-anisidine since ca. 80% of the wanted
product 4b was formed by using only 2 equivalents of 3b. The best
results were obtained with the more nucleophilic cyclohexyl-
amine 3c and 6-aminohexanol 3d. In these cases, cross-coupled
imines 4c and 4d were the major products with ratios of 90 : 10
and 499 : 1, respectively.
`
A. Hagege, H. Li, D. V. Jawale, D. Verma, I. N. N. Namboothiri and
`
E. Doris, Nanoscale, 2013, 5, 6491; (d) R. Kumar, E. Gravel, A. Hagege,
H. Li, D. Verma, I. N. N. Namboothiri and E. Doris, ChemCatChem, 2013,
5, 3571; (e) D. V. Jawale, E. Gravel, V. Geertsen, H. Li, N. Shah, R. Kumar,
J. John, I. N. N. Namboothiri and E. Doris, Tetrahedron, 2014, 70, 6140;
( f ) N. Shah, E. Gravel, D. V. Jawale, E. Doris and I. N. N. Namboothiri,
ChemCatChem, 2014, 6, 2201; (g) N. Shah, E. Gravel, D. V. Jawale,
E. Doris and I. N. N. Namboothiri, ChemCatChem, 2014, DOI: 10.1002/
cctc.201402782; (h) E. Gravel, D. Bernard, I. N. N. Namboothiri and
E. Doris, Actual. Chim., 2014, in press.
13 D. V. Jawale, E. Gravel, V. Geertsen, H. Li, N. Shah, I. N. N. Namboothiri
and E. Doris, ChemCatChem, 2014, 6, 719.
14 J. Mielby, S. Kegnæs and P. Fristrup, ChemCatChem, 2012, 4, 1037.
15 O. Yarimaga, J. Jaworski, B. Yoon and J.-M. Kim, Chem. Commun.,
2012, 48, 2469.
In summary, well-calibrated organic nanotubes were obtained
from the self-assembly and polymerization of diacetylene-
amphiphiles. These nanotubes served as support for gold nano- 16 T. Shimizu, M. Masuda and H. Minamikawa, Chem. Rev., 2005,
105, 1401.
particles that were anchored via a polyammonium layer. The
nanohybrid was used as a heterogeneous co-catalyst for the oxidative
17 D. G. Duff, A. Baiker and P. P. Edwards, Langmuir, 1993, 9, 2301.
18 (a) M. Boudart and G. Djega-Mariadassou, Kinetics of Heterogeneous
´
coupling of primary amines in the presence of gallacetophenone.
The system operates with minimal amounts of metal catalyst, under
air, at room temperature, in green solvents,19 and can be readily
recycled.
Catalytic Reactions, Princeton University Press, Princeton, NJ, 1984,
p. 26; (b) S. E. Davis, M. S. Ide and R. J. Davis, Green Chem., 2013,
15, 17.
19 C. Capello, U. Fischer and K. Hungerbu¨hler, Green Chem., 2007,
9, 927.
15254 | Chem. Commun., 2014, 50, 15251--15254
This journal is ©The Royal Society of Chemistry 2014